Retention of phytosiderophores by the soil solid phase – adsorption and desorption

Springer Science and Business Media LLC - Tập 404 - Trang 85-97 - 2016
M. Walter1, E. Oburger2, Y. Schindlegger3, S. Hann3, M. Puschenreiter2, S. M. Kraemer1, W. D. C. Schenkeveld1
1Department of Environmental Geosciences and Research Network Environmental Science, University of Vienna, Vienna, Austria
2Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Tulln, Austria
3Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria

Tóm tắt

Graminaceous plants exude phytosiderophores (PS) for acquiring Fe. Adsorption of PS and its metal complexes to the soil solid phase reduces the FePS solution concentration and hence Fe uptake. In this study we aimed to quantify adsorption, and to determine to what extent adsorption depends on the complexed metal and on soil properties. Furthermore, we examined if adsorption is a reversible process. Adsorption and desorption of PS and metal-PS complexes were examined in batch experiments in which the PS 2′-deoxymugineic acid (DMA) and its metal-complexes (FeDMA, CuDMA, NiDMA and ZnDMA) interacted with several calcareous soils. Adsorption of DMA ligand (0–1000 μM) and metal-DMA complexes (0–100 μM) was linear in the concentration range examined. Adsorption varied by a factor ≈2 depending on the complexed metal and by up to a factor 3.5 depending on the soil. Under field-like conditions (50 % water holding capacity), 50–84 % of the DMA was predicted to be retained to the soil solid phase. Alike adsorption, desorption of metal-DMA complexes is fast (approximate equilibrium within 1 hour). However, only a small fraction of the adsorbed FeDMA (28–35 %) could be desorbed. Despite this small fraction, the desorbed FeDMA still exceeded the amount in solution, indicating that desorption of FeDMA from soil reactive compounds can be an important process buffering the solution concentration.

Tài liệu tham khảo

Awad F, Romheld V, Marschner H (1988) Mobilization of ferric iorn from a calcareous soil by plant-borne chelators (phytosiderophores). J Plant Nutr 11:701–713. doi:10.1080/01904168809363835 Bucheli-Witschel M, Egli T (2001) Environmental fate and microbial degradation of aminopolycarboxylic acids. FEMS Microbiol Rev 25:69–106 Cesco S, Römheld V, Varanini Z, Pinton R (2000) Solubilization of iron by water-extractable humic substances. J Plant Nutr Soil Sci-Z Pflanzenernahr Bodenkd 163:285–290 Cesco S, Nikolic M, Römheld V, Varanini Z, Pinton R (2002) Uptake of 59Fe from soluble 59Fe-humate complexes by cucumber and barley plants. Plant Soil 241:121–128 Hiradate S, Inoue K (1998) Interaction of mugineic acid with iron (hydr)oxides: Sulfate and phosphate influences. Soil Sci Soc Am J 62:159–165 Hiradate S, Inoue K (2000) Dissolition of iron by mugineic acid from soils and comparison with DTPA soil test. Soil Sci Plant Nutr 46:673–681 Inoue K, Hiradate S, Takagi S (1993) Interaction of mugineic acid with synthetically produced iron oxides. Soil Sci Soc Am J 57:1254–1260 Kato M, Izuka S, Fujihara T, Nagasawa A, Kawai S, Tanaka T, Takayanagi T (2011) Electronic structure calculation study of metal complexes with a phytosiderophore mugineic acid. Inorg Chim Acta 370:304–310. doi:10.1016/j.ica.2011.01.091 Marschner H, Römheld V, Kissel M (1986) Different strategies in higher-plants in mobilization and uptake of iron. J Plant Nutr 9:695–713 Marschner H, Römheld V, Kissel M (1987) Localization of phytosiderophore release and of iron uptake along intact barley roots. Physiol Plant 71:157–162. doi:10.1111/j.1399-3054.1987.tb02861.x Mimmo T, Del Buono D, Terzano R, Tomasi N, Vigani G, Crecchio C, Pinton R, Zocchi G, Cesco S (2014) Rhizospheric organic compounds in the soil-microorganism-plant system: their role in iron availability. Eur J Soil Sci 65:629–642. doi:10.1111/ejss.12158 Murakami T, Ise K, Hayakawa M, Kamei S, Takagi SI (1989) Stabilities of metal-complexes of mugineic acids and their specific affinities for Fe(III). Chem Lett 18(12):2137–2140. doi:10.1246/cl.1989.2137 Namba K, Murata Y, Horikawa M, Iwashita T, Kusumoto S (2007) A practical synthesis of the phytosiderophore 2 '-deoxymugineic acid: A key to the mechanistic study of iron acquisition by graminaceous plants. Angew Chem Int Ed 46:7060–7063. doi:10.1002/anie.200702403 Oburger E, Gruber B, Schindlegger Y, Schenkeveld WDC, Hann S, Kraemer SM, Wenzel W, Puschenreiter M (2014) Root exudation of phytosiderophores from soil grown wheat. New Phytol 203:1161–1174. doi:10.1111/nph.12868 Pronk GJ, Heister K, Ding GC, Smalla K, Kogel-Knabner I (2012) Development of biogeochemical interfaces in an artificial soil incubation experiment; aggregation and formation of organo-mineral associations. Geoderma 189:585–594. doi:10.1016/j.geoderma.2012.05.020 Reichard PU, Kraemer SM, Frazier SW, Kretzschmar R (2005) Goethite dissolution in the presence of phytosiderophores: Rates, mechanisms, and the synergistic effect of oxalate. Plant Soil 276:115–132. doi:10.1007/s11104-005-3504-9 Reichard PU, Kretzschmar R, Kraemer SM (2007) Dissolution mechanisms of goethite in the presence of siderophores and organic acids. Geochim Cosmochim Ac 71:5635–5650. doi:10.1016/j.gca.2006.12.022 Reichman SM, Parker DR (2005) Metal complexation by phytosiderophores in the rhizosphere. In: PM Huang, GR Gobran (eds) Biogeochemistry of trace elements in the rhizosphere. Elsevier B.V. Schenkeveld WDC, Dijcker R, Reichwein AM, Temminghoff EJM, Van Riemsdijk WH (2008) The effectiveness of soil-applied FeEDDHA treatments in preventing iron chlorosis in soybean as a function of the o,o-FeEDDHA content. Plant Soil 303:161–176. doi:10.1007/s11104-007-9496-x Schenkeveld WDC, Temminghoff EJM, Reichwein AM, van Riemsdijk WH (2010) FeEDDHA-facilitated Fe uptake in relation to the behaviour of FeEDDHA components in the soil-plant system as a function of time and dosage. Plant Soil 332:69–85. doi:10.1007/s11104-009-0274-9 Schenkeveld WDC, Hoffland E, Reichwein AM, Temminghoff EJM, van Riemsdijk WH (2012a) The biodegradability of EDDHA chelates under calcareous soil conditions. Geoderma 173:282–288. doi:10.1016/j.geoderma.2011.12.007 Schenkeveld WDC, Reichwein AM, Temminghoff EJM, van Riemsdijk WH (2012b) Effect of Soil Parameters on the Kinetics of the Displacement of Fe from FeEDDHA Chelates by Cu. J Phys Chem A 116:6582–6589. doi:10.1021/jp2126448 Schenkeveld WDC, Oburger E, Gruber B, Schindlegger Y, Hann S, Puschenreiter M, Kraemer SM (2014a) Metal mobilization from soils by phytosiderophores – experiment and equilibrium modeling. Plant Soil 383:59–71. doi:10.1007/s11104-014-2128-3 Schenkeveld WDC, Schindlegger Y, Oburger E, Puschenreiter M, Hann S, Kraemer SM (2014b) Geochemical processes constraining iron uptake in strategy II Fe acquisition. Environ Sci Technol 48:12662–12670. doi:10.1021/es5031728 Schindlegger Y, Oburger E, Gruber B, Schenkeveld WDC, Kraemer SM, Puschenreiter M, Koellensperger G, Hann S (2014) Accurate LC-ESI-MS/MS quantification of deoxymugineic acid in soil and root related samples employing porous graphitic carbon as stationary phase and a 13C4 labeled internal standard. Electrophoresis 35:1375–1385. doi:10.1002/elps.201300551 Schindlegger Y, Oburger E, Puschenreiter M, Stingeder G, Koellensperger G, Hann S (2015) Speciation of 2 '-deoxymugineic acid-metal complexes in top soil extracts by multi-modal stationary phase LC-ICP-MS. J Anal At Spectrom 30:1345–1355. doi:10.1039/c5ja00018a Shenker M, Fan TWM, Crowley DE (2001) Phytosiderophores influence on cadmium mobilization and uptake by wheat and barley plants. J Environ Qual 30:2091–2098 Shi WM, Chino M, Youssef RA, Mori S, Takagi S (1988) The occurrence of mugineic acid in the rhizosphere soil of barley plant. Soil Sci Plant Nutr 34:585–592 Siebner-Freibach H, Hadar Y, Chen Y (2004) Interaction of iron chelating agents with clay minerals. Soil Sci Soc Am J 68:470–480 Takagi SI (1976) Naturally occurring iron-chelating compounds in oat-root and rice-root washings.1. Activity measurement and prelininary characterization. Soil Sci Plant Nutr 22:423–433 Takagi S, Nomoto K, Takemoto T (1984) Physiological aspect of mugineic acid, a possible phytosiderophore of graminaceous plants. J Plant Nutr 7:469–477. doi:10.1080/01904168409363213 Takagi SI, Kamei S, Yu MH (1988) Efficiency of iron extraction from soil by mugineic acid family phytosiderophores. J Plant Nutr 11:643–651. doi:10.1080/01904168809363830 Treeby M, Marschner H, Römheld V (1989) Mobilization of iron and other micronutrient cations from a calcareous soil by plant-borne, microbial and synthetic metal chelators. Plant Soil 114:217–226. doi:10.1007/bf02220801 Von Wirén N, Romheld V, Morel JL, Guckert A, Marschner H (1993) Influence of microorganisms on iron acquisition in maize. Soil Biol Biochem 25:371–376. doi:10.1016/0038-0717(93)90136-y Von Wirén N, Romheld V, Shioiri T, Marschner H (1995) Competition between microorganisms and roots of barley and sorghum for iron accumulated in the root apoplasm. New Phytol 130:511–521 Von Wirén N, Khodr H, Hider RC (2000) Hydroxylated phytosiderophore species possess an enhanced chelate stability and affinity for iron(III). Plant Physiol 124:1149–1157. doi:10.1104/pp.124.3.1149 Walter MR, Artner D, Stanetty C (2014) Synthesis of C-13(4) -labeled 2 '-deoxymugineic acid. J Label Compd Radiopharm 57:710–714. doi:10.1002/jlcr.3242 Watanabe S, Matsumoto S (1994) Effect of monosilicate, phosphate, and carbonate on iron dissolution by mugineic acid. Soil Sci Plant Nutr 40:9–17 Zhang FS, Treeby M, Römheld V, Marschner H (1991) Mobilization of iron by phytosiderophores as effected by other micronutrients. Plant Soil 130:173–178. doi:10.1007/bf00011872 Zhuang J, Yu GR (2002) Effects of surface coatings on electrochemical properties and contaminant sorption of clay minerals. Chemosphere 49:619–628. doi:10.1016/s0045-6535(02)00332-6