Phản ứng của ngao (Perumytilus purpuratus) đối với các tín hiệu từ nước mang phân tử xả thải của ốc ăn thịt (Acanthina monodon) phụ thuộc vào cường độ tín hiệu qua nước

Joseline A. Büchner-Miranda1, Luis P. Salas-Yanquin1,2, Nelson Valdivia1,3, Ricardo A. Scrosati4, Bárbara Riedemann-Saldivia1, Víctor M. Cubillos1, Oscar R. Chaparro1
1Instituto de Ciencias Marinas y Limnológicas, Universidad Austral de Chile, Valdivia, Chile
2Universidad Nacional Autónoma de México, Facultad de Ciencias, Unidad Multidisciplinaria de Docencia E Investigación, Sisal, Mexico
3Centro FONDAP de Investigación de Dinámicas de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile
4Department of Biology, St. Francis Xavier University, Antigonish, Canada

Tóm tắt

Kẻ săn mồi ảnh hưởng đến con mồi qua các hiệu ứng tiêu thụ và phi tiêu thụ (NCEs). Đối với NCEs trong môi trường biển, các tín hiệu hóa học từ kẻ săn mồi (ví dụ: phân tử xả thải) có thể kích thích nhiều phản ứng chống kẻ săn mồi ở con mồi, có thể khác nhau về cường độ theo mức độ mạnh của tín hiệu mà chúng nhận được. Các mẫu ngao Perumytilus purpuratus đã được tiếp xúc với nước biển chứa các mật độ khác nhau của ốc ăn thịt Acanthina monodon như là một đại diện cho cường độ tín hiệu của kẻ săn mồi. Phản ứng của ngao được định lượng dựa trên kích thước khe mở van (VGS), tỷ lệ thanh lọc (CR), và tỷ lệ tiêu thụ oxy (OCR). Kết quả cho thấy rằng ngao đã giảm VGS, CR, và OCR tùy thuộc vào cường độ của các phân tử xả thải từ kẻ săn mồi mà chúng tiếp xúc. Những kết quả này cho thấy ngao không chỉ có khả năng phát hiện kẻ săn mồi thông qua các phân tử xả thải hóa học mà còn có thể phát hiện cường độ của tín hiệu kẻ săn mồi và do đó phản ứng sinh lý (CR, OCR) và hành vi (VGS) tương ứng với mức độ rủi ro bị săn mồi tiềm tàng. Những phản ứng này có thể có các tác động lan tỏa ở cấp độ cộng đồng, bởi vì ngao là các loài nền tảng.

Từ khóa

#Predators #Prey #Marine Non-consumptive Effects #Chemical Cues #Perumytilus purpuratus #Acanthina monodon

Tài liệu tham khảo

Antoł A, Kierat J, Czarnoleski M (2018) Sedentary prey facing an acute predation risk: testing the hypothesis of inducible metabolite emission suppression in zebra mussels, Dreissena polymorpha. Hydrobiologia 810:109–117 Averbuj A, Büchner-Miranda JA, Salas-Yanquin LP, Navarro JM, Pardo LM, Matos AS, Pechenik JA, Chaparro OR (2021) Energetic trade-offs: implications for selection between two bivalve prey species by a carnivorous muricid gastropod. PLoS ONE 16(4):e0250937 Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48 Boudreau ML, Scrosati RA, Wong MC (2018) Predator (Carcinus maenas) nonconsumptive limitation of prey (Nucella lapillus) feeding depends on prey density and predator cue type. J Ethol 36:259–264 Brönmark C, Hansson LA (2012) Chemical ecology in aquatic systems. Oxford University Press, Oxford Brown GE, Chivers DP, Smith RJF (1995) Fathead minnows avoid conspecific and heterospecific alarm pheromones in the faeces of northern pike. J Fish Biol 47:387–393 Büchner-Miranda JA, Salas-Yanquin LP, Averbuj A, Navarro JM, Cubillos VM, Matos A, Zabala S, Chaparro OR (2021) Ontogenetic shifts of predatory strategies by the carnivorous gastropod Acanthina monodon (Pallas, 1774). Malacologia 64:93–108 Carroll JM, Clements JC (2019) Scaredy-Oysters: in situ documentation of an oyster behavioral response to predators. Southeast Nat 18:21–26 Catalán AM, Büchner-Miranda J, Riedemann B, Chaparro OR, Valdivia N, Scrosati RA (2021) Community-wide consequences of nonconsumptive predator effects on a foundation species. J Anim Ecol 90:1307–1316 Cheung S, Yang F, Chiu JM, Liu CC, Shin P (2009) Anti-predator behaviour in the green-lipped mussel Perna viridis: byssus thread production depends on the mussel’s position in clump. Mar Ecol Prog Ser 378:145–151 Coughlan J (1969) The estimation of filtering rate from clearance of suspensions. Mar Biol 2:356–358 Crook KA, Davoren GK (2014) Underwater behaviour of common murres foraging on capelin: influences of prey density and antipredator behaviour. Mar Ecol Prog Ser 501:279–290 Czarnoleski M, Müller T, Kierat J, Gryczkowski L, Chybowski L (2011) Anchor down or hunker down: an experimental study on zebra mussels’ response to predation risk from crayfish. Anim Behav 82:543–548 Dzierżyńska-Białończyk A, Jermacz L, Zielska J, Kobak J (2019) What scares a mussel? Changes in valve movement pattern as an immediate response of a byssate bivalve to biotic factors. Hydrobiologia 841:65–77 Ellrich JA, Scrosati RA (2016) Water motion modulates predator nonconsumptive limitation of prey recruitment. Ecosphere 7:e01402 Ellrich JA, Scrosati RA, Petzold W (2015) Predator density affects nonconsumptive predator limitation of prey recruitment: field experimental evidence. J Mar Biol Ecol 472:72–76 Ellrich JA, Scrosati RA, Bertolini C, Molis M (2016) A predator has nonconsumptive effects on different life-history stages of a prey. Mar Biol 163:5 Ferland-Raymond B, March RE, Metcalfe CD, Murray DL (2010) Prey detection of aquatic predators: assessing the identity of chemical cues eliciting prey behavioral plasticity. Biochem Syst Ecol 38:169–177 Ferrari MCO, Messier F, Chivers DP (2006) The nose knows: minnows determine predator proximity and density through detection of predator odours. Anim Behav 72:927–932 Ferrari MCO, Wisenden BD, Chivers DP (2010) Chemical ecology of predator prey interactions in aquatic ecosystems: a review and prospectus. Can J Zool 88:698–724 Galbraith HS, Vaughn CC (2009) Temperature and food interact to influence gamete development in freshwater mussels. Hydrobiologia 636:35–47 Gaynor KM, Brown JS, Middleton AD, Power ME, Brashares JS (2019) Landscapes of fear: spatial patterns of risk perception and response. Trends Ecol Evol 34:355–368 Gosnell JS, Gaines SD (2012) Keystone intimidators in the intertidal: non-consumptive effects of a keystone sea star regulate feeding and growth in whelks. Mar Ecol Prog Ser 450:107–114 Hartig F (2022) DHARMa: residual diagnostics for hierarchical (Multi-level/mixed) regression models Heuschele J, Ceballos S, Borg CMA, Bjærke O, Isari S, Lasley-Rasher R, Lindehoff E, Souissi A, Souissi S, Titelman J (2014) Non-consumptive effects of predator presence on copepod reproduction: insights from a mesocosm experiment. Mar Biol 161:1653–1666 Hill JF, Weissburg MJ (2013) Predator biomass determines the magnitude of non-consumptive effects (NCEs) in both laboratory and field environments. Oecologia 172:79–91 Holt RD (2009) Predation and community organization. In: Levin SA (ed) The Princeton guide to ecology. Princeton University Press, Princeton, pp 274–281 Hubert J, van der Burg AD, Witbaard R, Slabbekoorn H (2023) Separate and combined effects of boat noise and a live crab predator on mussel valve gape behavior. Behav Ecol 35:4. https://doi.org/10.1093/beheco/arad012 Jermacz L, Kobak J (2023) On the importance of concomitant conditions: light and conspecific presence modulate prey response to predation cue. Curr Zool 69:354–359 Jermacz L, Kletkiewicz H, Krzyżyńska K, Klimiuk M, Kobak J (2020) Does global warming intensify cost of antipredator reaction? A case study of freshwater amphipods. Sci Total Environ 742:140474 Johnston BR, Molis M, Scrosatti RA (2012) Predator chemical cues affect prey feeding activity differently in juveniles and adults. Can J Zool 90:128–132 Kassambara A (2020) ggpubr: 'ggplot2' Based Publication Ready Plots. https://CRAN.R-project.org/package=ggpubr, R package version 0.4.0 Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animals. Ecoscience 5:361–394 Keppel E, Scrosati R (2004) Chemically mediated avoidance of Hemigrapsus nudus (Crustacea) by Littorina scutulata (Gastropoda): effects of species coexistence and variable cues. Anim Behav 68:915–920 Lancellotti DA, Vasquez JA (2000) Zoogeografía de macroinvertebrados bentónicos de la costa de Chile: contribución para la conservación marina. Rev Chilena Hist Nat 73:99–129 Lima SL (1998) Nonlethal effects in the ecology of predator-prey interactions. Bioscience 48:25–34 Loflen CL, Hovel KA (2010) Behavioral responses to variable predation risk in the California spiny lobster Panulirus interruptus. Mar Ecol Prog Ser 420:135–144 Loose CJ, Dawidowicz P (1994) Trade-offs in diel vertical migration by zooplankton: the costs of predator avoidance. Ecology 75:2255–2263 Lopez DA, Gonzalez ML, Vial MV, Simpfendörfer RW (1995) Sublethal effects provoked by the presence of the predator Nucella crassilabrum (Lamarck) upon the mussel Perumytilus purpuratus (Lamarck) in Chile. Rev Chilena Hist Nat 68:469–475 Lüdecke D (2021) sjPlot: data visualization for statistics in social science. https://CRAN.R-project.org/package=sjPlo, R package version 2.8.10 Luttbeg B, Trussell G (2013) How the informational environment shapes how prey estimate predation risk and the resulting indirect effects of predators. Am Nat 181:182–194 Matassa CM, Trussell GC (2011) Landscape of fear influences the relative importance of consumptive and nonconsumptive predator effects. Ecology 92:2258–2266 Montory JA, Chaparro OR, Salas-Yanquin LP, Büchner-Miranda JA, Pechenik JA, Cubillos VM (2021) Impact of intertidal distribution on the physiological performance of the filter-feeder bivalve Perumytilus purpuratus (Bivalvia, Mytilidae) from Southern Chile. Malacologia 64:137–147 Naddafi R, Rudstam LG (2013) Predator-induced behavioural defences in two competitive invasive species: the zebra mussel and the quagga mussel. Anim Behav 86:1275–1284 Naddafi R, Eklöv P, Pettersson K (2007) Non-lethal predator effects on the feeding rate and prey selection of the exotic zebra mussel Dreissena polymorpha. Oikos 116:1289–1298 Nakagawa S, Schielzeth H (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol Evol 4:133–142 Peacor SD, Werner EE (2001) The contribution of trait-mediated indirect effects to the net effects of a predator. Proc Nat Acad Sci 98:3904–3908 Peckarsky BL, Cowan CA, Penton MA, Anderson C (1993) Sublethal consequences of stream-dwelling predatory stoneflies on mayfly growth and fecundity. Ecology 74:1836–1846 Peckarsky BL, McIntosh AR, Taylor BW, Dahl J (2002) Predator chemicals induce changes in mayfly life-history traits: a whole-stream manipulation. Ecology 83:612–618 Preisser EL, Bolnick DI (2008) The many faces of fear: comparing the pathways and impacts of nonconsumptive predator effects on prey populations. PLoS ONE 3(6):e2465 Preisser EL, Bolnick DI, Benard MF (2005) Scared to death? The effects of intimidation and consumption in predator–prey interactions. Ecology 86:501–509 R Core Team (2021) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna Reimer O, Olsson B, Tedengren M (1995) Growth, physiological rates and behaviour of Mytilus edulis exposed to the predator Asterias rubens. Mar Freshw Behav Physiol 25:233–244 Richoux NB, Thompson RJ (2001) Regulation of particle transport within the ventral groove of the mussel (Mytilus edulis) gill in response to environmental conditions. J Exp Mar Biol Ecol 260:199–215 Riedemann-Saldivia B, Büchner-Miranda JA, Salas-Yanquin LP, Valdivia N, Catalán AM, Scrosati RA, Chaparro OR (2022) Non-consumptive effects of a predatory snail (Acanthina monodon) on a dominant habitat-forming mussel species (Perumytilus purpuratus). Mar Environ Res 175:105573 Robson A, Garcia de Leaniz C, Wilson RP, Halsey L (2010) Behavioural adaptations of mussels to varying levels of food availability and predation risk. J Moll Stud 76:348–353 Scherer AE, Smee DL (2016) A review of predator diet effects on prey defensive responses. Chemoecology 26:83–100 Scherer AE, Garcia MM, Smee DL (2017) Predatory blue crabs induce stronger nonconsumptive effects in eastern oysters Crassostrea virginica than scavenging blue crabs. PeerJ 5:e3042 Scrosati RA (2021) Nonconsumptive predator effects on prey demography: Recent advances using intertidal invertebrates. Front Ecol Evol 9:626869 Selden R, Johnson AS, Ellers O (2009) Waterborne cues from crabs induce thicker skeletons, smaller gonads, and size specific changes in growth rate in sea urchins. Mar Biol 156:1057–1071 Sherker ZT, Ellrich JA, Scrosati RA (2017) Predator-induced shell plasticity in mussels hinders predation by drilling snails. Mar Ecol Prog Ser 573:167–175 Smee DL, Weissburg MJ (2006a) Clamming up: environmental forces diminish the perceptive ability of bivalve prey. Ecology 87:1587–1598 Smee DL, Weissburg MJ (2006b) Hard clams (Mercenaria mercenaria) evaluate predation risk using chemical signals from predators and injured conspecifics. Chem Ecol 32:605–619 Solas MR, Sepúlveda RD, Brante A (2013) Genetic variation of the shell morphology in Acanthina monodon (Gastropoda) in habitats with different wave exposure conditions. Aquat Biol 18:253–260 Soto RE, Castilla JC, Bozinovic F (2004) Conducta de forrajeo del gasterópodo Acanthina monodon Pallas, 1774 (Gastropoda: Muricidae) en el intermareal rocoso de Chile central. Rev Chilena Hist Nat 77:157–175 Stoeckmann AM, Garton DW (2001) Flexible energy allocation in zebra mussels Dreissena polymorpha) in response to different environmental conditions. J N Am Benthol Soc 20:486–500 Thiel M, Ullrich N (2002) Hard rock versus soft bottom: the fauna associated with intertidal mussel beds on hard bottoms along the coast of Chile, and considerations on the functional role of mussel beds. Helgol Mar Res 56:21–30 Trussell GC, Ewanchuk PJ, Bertness MD (2003) Trait-mediated effects in rocky intertidal food chains: predator risk cues alter prey feeding rates. Ecology 84:629–640 Vargas CA, de la Hoz M, Aguilera V, San Martin V, Manriquez PH, Navarro JM, Torres R, Lardies MA, Lagos NA (2013) CO2-driven ocean acidification reduces larval feeding efficiency and changes food selectivity in the mollusk Concholepas concholepas. J Plank Res 35:1059–1068 Vial MV, Simpfendörfer RW, López DA, González ML, Oelckers K (1992) Metabolic responses of the intertidal mussel Perumytilus purpuratus (Lamarck) in emersion and immersion. J Exp Mar Biol Ecol 159:191–201 Von Elert E, Pohner G (2000) Predator specificity of kairomones in diel vertical migration of Daphnia: a chemical approach. Oikos 88:119–128 Wacker A, von Elert E (2002) Strong influences of larval diet history on subsequent post-settlement growth in the freshwater mollusc Dreissena polymorpha. Proc Soc Lond B Biol Sci 269:2113–2119 Werner EE, Peacor SD (2003) A review of trait-mediated indirect interactions in ecological communities. Ecol Soc Am 84:1083–1100 Wickham H, Averick M, Bryan J, Chang W et al (2019) Welcome to the tidyverse. J Open Source Softw 4:1686 Wickham H, Bryan J (2022) readxl: read excel files. https://CRAN.R-project.org/package=readxl, R package version 1.4.0. Wilke CO (2020) cowplot: streamlined plot theme and plot annotations for 'ggplot2'. R package version 100