Responses of Clostridia to oxygen: from detoxification to adaptive strategies

Wiley - Tập 23 Số 8 - Trang 4112-4125 - 2021
Claire Morvan1, Filipe Folgosa2, Nicolas Kint1,3, Miguel Teixeira2, Isabelle Martin‐Verstraete4,1
1Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur Université de Paris Paris F‐75015 France
2Instituto de Tecnologia Química e Biológica António Xavier Universidade Nova de Lisboa, Av. da República Oeiras 2780‐157 Portugal
3Present address: Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
4Institut Universitaire de France, Paris, France

Tóm tắt

SummaryClostridia comprise bacteria of environmental, biotechnological and medical interest and many commensals of the gut microbiota. Because of their strictly anaerobic lifestyle, oxygen is a major stress for Clostridia. However, recent data showed that these bacteria can cope with O2 better than expected for obligate anaerobes through their ability to scavenge, detoxify and consume O2. Upon O2 exposure, Clostridia redirect their central metabolism onto pathways less O2‐sensitive and induce the expression of genes encoding enzymes involved in O2‐reduction and in the repair of oxidized damaged molecules. While Faecalibacterium prausnitzii efficiently consumes O2 through a specific extracellular electron shuttling system requiring riboflavin, enzymes such as rubrerythrins and flavodiiron proteins with NAD(P)H‐dependent O2‐ and/or H2O2‐reductase activities are usually encoded in other Clostridia. These two classes of enzymes play indeed a pivotal role in O2 tolerance in Clostridioides difficile and Clostridium acetobutylicum. Two main signalling pathways triggering O2‐induced responses have been described so far in Clostridia. PerR acts as a key regulator of the O2‐ and/or reactive oxygen species–defence machinery while in C. difficile, σB, the sigma factor of the general stress response also plays a crucial role in O2 tolerance by controlling the expression of genes involved in O2 scavenging and repair systems.

Từ khóa


Tài liệu tham khảo

10.1038/nrmicro.2016.108

10.1053/j.gastro.2014.07.020

10.1016/j.bbagen.2010.05.010

10.3389/fmicb.2018.03183

10.1128/mSphere.00728-20

10.1089/ars.2020.8039

10.1074/jbc.REV120.007746

10.1053/j.gastro.2014.01.059

10.1007/s00203-004-0721-1

10.1046/j.1365-2958.1998.00921.x

10.1146/annurev.micro.60.080805.142216

10.1128/mSystems.00299-18

10.3389/fmicb.2016.01822

10.1006/bbrc.1993.1595

10.1006/bbrc.1999.0197

10.3945/ajcn.2010.29269

10.1099/mic.0.045740-0

10.1099/ijs.0.02241-0

10.3389/fmicb.2016.01698

10.1099/jmm.0.47657-0

10.1099/mic.0.26155-0

10.1093/femsle/fnx267

10.1038/s41598-018-28453-3

10.1016/j.giec.2019.02.005

10.1007/s11908-016-0525-x

10.1016/j.anaerobe.2007.03.002

10.1093/femspd/fty010

10.1128/IAI.00326-18

Harmsen H.J.M. Khan M.T. Sadaghian Sadabad M. andVan Dijl J.M.(2015)Methods and compositions for stimulating beneficial bacteria in the gastrointestinal tract. In Office E.P.(ed).Netherlands:Rijksuniversiteit Groningen Academisch Ziekenhuis Groningen.

10.1146/annurev.micro.61.080706.093445

10.1128/JB.01780-14

10.1186/s12918-017-0522-1

10.1128/JB.00351-09

10.1111/j.1365-2958.2008.06192.x

10.1016/j.febslet.2008.12.004

10.1128/JB.00098-15

10.1021/cb3001149

10.1128/IAI.69.6.3744-3754.2001

10.1111/j.1365-2958.2006.05028.x

10.1016/j.freeradbiomed.2019.01.048

10.1074/jbc.M115.664961

10.1128/AEM.68.2.1005-1009.2002

10.1007/s00203-004-0659-3

10.1016/S0922-338X(99)89006-0

10.1016/j.febslet.2007.04.050

10.1128/AEM.01425-08

10.1128/AEM.71.12.8442-8450.2005

10.1152/physrev.00041.2017

10.1016/j.chom.2015.03.005

10.1016/j.tim.2020.10.001

10.1111/mmi.14516

10.1089/ars.2012.4701

10.1038/ismej.2012.5

10.1371/journal.pone.0096097

10.1016/j.femsre.2004.03.001

10.1111/1462-2920.14642

10.1128/mBio.01559-20

10.1111/1462-2920.13696

10.1021/ja1076537

10.1016/j.chom.2020.05.015

10.1016/j.jinorgbio.2005.12.017

10.1128/AEM.67.10.4734-4741.2001

10.1038/nature04537

10.1016/S0014-5793(98)00610-3

10.1007/s00775-002-0400-0

10.1111/j.1462-5822.2010.01549.x

10.1016/j.freeradbiomed.2019.01.051

10.1111/j.1574-6968.2004.tb09763.x

10.1146/annurev-micro-091014-104457

Meyer J., 2000, Clostridial iron‐sulphur proteins, J Mol Microbiol Biotechnol, 2, 9

10.1038/s41598-020-64834-3

10.1038/nrmicro2970

10.1016/j.anaerobe.2018.05.018

10.1099/00221287-68-3-307

10.1038/nrmicro1288

10.1089/ars.2017.7359

10.1007/s00775-010-0749-4

10.1099/mic.0.022756-0

10.1038/ismej.2013.80

10.1016/j.chom.2016.03.004

10.1007/s00775-015-1329-4

10.1016/j.jmb.2016.10.008

10.1016/j.anaerobe.2017.07.002

10.1021/acschembio.5b01054

10.1021/cr4005296

10.1053/j.gastro.2008.04.017

10.1016/j.copbio.2011.10.008

10.1007/s11274-021-03004-7

10.1006/anae.2000.0346

10.1128/mSphere.00091-21

10.1099/mic.0.056978-0

10.1128/EC.00149-12

10.1128/JB.186.23.7888-7895.2004

10.1128/AEM.02491-15

10.1007/s10482-011-9634-6

10.1146/annurev-biochem-060815-014442

10.1128/JB.02037-14

10.1016/j.ymben.2011.01.009