Response to neoadjuvant chemotherapy in breast cancer: do microRNAs matter?
Tóm tắt
Từ khóa
Tài liệu tham khảo
Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA Cancer J Clin. 2021;71:7–33. https://doi.org/10.3322/CAAC.21654.
Kurozumi S, Yamaguchi Y, Kurosumi M, et al. Recent trends in microRNA research into breast cancer with particular focus on the associations between microRNAs and intrinsic subtypes. J Hum Genet. 2017;62:15–24. https://doi.org/10.1038/JHG.2016.89.
Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834–8. https://doi.org/10.1038/NATURE03702.
Izumiya M, Tsuchiya N, Okamoto K, Nakagama H. Systematic exploration of cancer-associated microRNA through functional screening assays. Cancer Sci. 2011;102:1615–21. https://doi.org/10.1111/J.1349-7006.2011.02007.X.
Adi Harel S, Bossel Ben-Moshe N, Aylon Y, et al. Reactivation of epigenetically silenced miR-512 and miR-373 sensitizes lung cancer cells to cisplatin and restricts tumor growth. Cell Death Differ. 2015;22:1328–40. https://doi.org/10.1038/CDD.2014.221.
Yang L, Song X, Zhu J, et al. Tumor suppressor microRNA-34a inhibits cell migration and invasion by targeting MMP-2/MMP-9/FNDC3B in esophageal squamous cell carcinoma. Int J Oncol. 2017;51:378–88. https://doi.org/10.3892/ijo.2017.4015.
Lima CR, Gomes CC, Santos MF. Role of microRNAs in endocrine cancer metastasis. Mol Cell Endocrinol. 2017;456:62–75. https://doi.org/10.1016/J.MCE.2017.03.015.
Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Can Res. 2005;65:7065–70. https://doi.org/10.1158/0008-5472.CAN-05-1783.
Ohzawa H, Miki A, Teratani T, et al. Usefulness of miRNA profiles for predicting pathological responses to neoadjuvant chemotherapy in patients with human epidermal growth factor receptor 2-positive breast cancer. Oncol Lett. 2017;13:1731–40. https://doi.org/10.3892/OL.2017.5628.
Blenkiron C, Goldstein LD, Thorne NP, et al. MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 2007;8:R214. https://doi.org/10.1186/GB-2007-8-10-R214.
Alma DCP, Gerardo CM, Abraham PT, et al. Micro-RNAs as potential predictors of response to breast cancer systemic therapy: future clinical implications. Int J Mol Sci. 2017;18:1182. https://doi.org/10.3390/IJMS18061182.
Takahashi RU, Miyazaki H, Ochiya T. The roles of microRNAs in breast cancer. Cancers. 2015;7:598–616. https://doi.org/10.3390/CANCERS7020598.
Kolacinska A, Morawiec J, Fendler W, et al. Association of microRNAs and pathologic response to preoperative chemotherapy in triple negative breast cancer: preliminary report. Mol Biol Rep. 2014;41:2851–7. https://doi.org/10.1007/S11033-014-3140-7.
Negrini M, Nicoloso MS, Calin GA. MicroRNAs and cancer–new paradigms in molecular oncology. Curr Opin Cell Biol. 2009;21:470–9. https://doi.org/10.1016/J.CEB.2009.03.002.
Kastl L, Brown I, Schofield AC. miRNA-34a is associated with docetaxel resistance in human breast cancer cells. Breast Cancer Res Treat. 2012;131:445–54. https://doi.org/10.1007/S10549-011-1424-3.
Peurala H, Greco D, Heikkinen T, et al. MiR-34a expression has an effect for lower risk of metastasis and associates with expression patterns predicting clinical outcome in breast cancer. PLoS ONE. 2011;6: e26122. https://doi.org/10.1371/JOURNAL.PONE.0026122.
Eichelser C, Flesch-Janys D, Chang-Claude J, et al. Deregulated serum concentrations of circulating cell-free microRNAs miR-17, miR-34a, miR-155, and miR-373 in human breast cancer development and progression. Clin Chem. 2013;59:1489–96. https://doi.org/10.1373/CLINCHEM.2013.205161.
Tokumaru Y, Eriko K, Oshi M, et al. High expression of miR-34a associated with less aggressive cancer biology but not with survival in breast cancer. Int J Mol Sci. 2020;21:3045. https://doi.org/10.3390/IJMS21093045.
Chen F, Luo N, Hu Y, et al. MiR-137 suppresses triple-negative breast cancer stemness and tumorigenesis by perturbing BCL11A-DNMT1 Interaction. Cell Physiol Biochem. 2018;47:2147–58. https://doi.org/10.1159/000491526.
Lee SJ, Jeong JH, Kang SH, et al. MicroRNA-137 inhibits cancer progression by targeting Del-1 in triple-negative breast cancer cells. Int J Mol Sci. 2019;20:6162. https://doi.org/10.3390/IJMS20246162.
Ying X, Sun Y, He P. MicroRNA-137 inhibits BMP7 to enhance the epithelial-mesenchymal transition of breast cancer cells. Oncotarget. 2017;8:18348–58. https://doi.org/10.18632/ONCOTARGET.15442.
Hafez MM, Hassan ZK, Zekri ARN, et al. MicroRNAs and metastasis-related gene expression in Egyptian breast cancer patients. Asian Pac J Cancer Prev. 2012;13:591–8. https://doi.org/10.7314/APJCP.2012.13.2.591.
Kong W, He L, Richards EJ, et al. Upregulation of miRNA-155 promotes tumour angiogenesis by targeting VHL and is associated with poor prognosis and triple-negative breast cancer. Oncogene. 2014;33:679–89. https://doi.org/10.1038/ONC.2012.636.
Farsinejad S, Rahaie M, Alizadeh AM, et al. Expression of the circulating and the tissue microRNAs after surgery, chemotherapy, and radiotherapy in mice mammary tumor. Tumour Biol. 2016;37:14225–34. https://doi.org/10.1007/S13277-016-5292-7.
Gasparini P, Lovat F, Fassan M, et al. Protective role of miR-155 in breast cancer through RAD51 targeting impairs homologous recombination after irradiation. Proc Natl Acad Sci USA. 2014;111:4536–41. https://doi.org/10.1073/PNAS.1402604111.
Huang Q, Gumireddy K, Schrier M, et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol. 2008;10:202–10. https://doi.org/10.1038/NCB1681.
Jing SY, Jing SQ, Liu LL, et al. Down-expression of miR-373 predicts poor prognosis of glioma and could be a potential therapeutic target. Eur Rev Med Pharmacol Sci. 2017;21:2421–5.
Nakata K, Ohuchida K, Mizumoto K, et al. Micro RNA-373 is down-regulated in pancreatic cancer and inhibits cancer cell invasion. Ann Surg Oncol. 2014;21(Suppl 4):564–74. https://doi.org/10.1245/S10434-014-3676-8.
Qu Y, Liu H, Zheng L, et al. Effects of microRNA-373 on the proliferation and invasiveness of breast carcinoma and its mechanisms. Zhonghua Yi Xue Za Zhi. 2017;97:603–7. https://doi.org/10.3760/CMA.J.ISSN.0376-2491.2017.08.009.
Crosby ME, Kulshreshtha R, Ivan M, Glazer PM. MicroRNA regulation of DNA repair gene expression in hypoxic stress. Can Res. 2009;69:1221–9. https://doi.org/10.1158/0008-5472.CAN-08-2516.
Kofman AV, Kim J, Park SY, et al. microRNA-34a promotes DNA damage and mitotic catastrophe. Cell Cycle. 2013;12:3500–11. https://doi.org/10.4161/CC.26459.
Czochor JR, Sulkowski P, Glazer PM. miR-155 overexpression promotes genomic instability by reducing high-fidelity polymerase delta expression and activating error-prone DSB repair. Mol Cancer Res. 2016;14:363–73. https://doi.org/10.1158/1541-7786.MCR-15-0399.
Ryspayeva D, Lyashenko A, Dosenko I, et al. Predictive factors of pathological response to neoadjuvant chemotherapy in patients with breast cancer. JBUON. 2020;25:168–75.
Wang L, Asirvatham JR, Ma Y, et al. HER-2/neu-positive breast cancer neoadjuvant chemotherapy response after implementation of 2018 ASCO/CAP focused update. Breast J. 2021;27:631–7. https://doi.org/10.1111/TBJ.14241.
Ogston KN, Miller ID, Payne S, et al. A new histological grading system to assess response of breast cancers to primary chemotherapy: prognostic significance and survival. Breast. 2003;12:320–7. https://doi.org/10.1016/S0960-9776(03)00106-1.
Wei F, Cao C, Xu X, Wang J. Diverse functions of miR-373 in cancer. J Transl Med. 2015;13:162. https://doi.org/10.1186/S12967-015-0523-Z.
Wang LQ, Yu P, Li B, et al. miR-372 and miR-373 enhance the stemness of colorectal cancer cells by repressing differentiation signaling pathways. Mol Oncol. 2018;12:1949–64. https://doi.org/10.1002/1878-0261.12376.
Zhou AD, Diao LT, Xu H, et al. β-Catenin/LEF1 transactivates the microRNA-371–373 cluster that modulates the Wnt/β-catenin-signaling pathway. Oncogene. 2012;31:2968–78. https://doi.org/10.1038/onc.2011.461.
Peng Y, Zhang X, Feng X, et al. The crosstalk between microRNAs and the Wnt/β-catenin signaling pathway in cancer. Oncotarget. 2017;8:14089–106. https://doi.org/10.18632/ONCOTARGET.12923.
Chen D, Dang BL, Huang JZ, et al. MiR-373 drives the epithelial-to-mesenchymal transition and metastasis via the miR-373-TXNIP-HIF1α-TWIST signaling axis in breast cancer. Oncotarget. 2015;6:32701–12. https://doi.org/10.18632/ONCOTARGET.4702.
Weng J, Zhang H, Wang C, et al. miR-373-3p targets DKK1 to promote EMT-induced metastasis via the Wnt/ β-catenin pathway in tongue squamous cell carcinoma. Biomed Res Int. 2017;2017:6010926. https://doi.org/10.1155/2017/6010926.
Tessitore A, Cicciarelli G, Del Vecchio F, et al. MicroRNAs in the DNA damage/repair network and cancer. Int J Genomics. 2014;2014: 820248. https://doi.org/10.1155/2014/820248.
Han ZB, Yang Z, Chi Y, et al. MicroRNA-124 suppresses breast cancer cell growth and motility by targeting CD151. Cell Physiol Biochem. 2013;31:823–32. https://doi.org/10.1159/000350100.
Chen Z, Liu S, Tian L, et al. miR-124 and miR-506 inhibit colorectal cancer progression by targeting DNMT3B and DNMT1. Oncotarget. 2015;6:38139–50. https://doi.org/10.18632/ONCOTARGET.5709.
Yang Q, Wan L, Xiao C, et al. Inhibition of LHX2 by miR-124 suppresses cellular migration and invasion in non-small cell lung cancer. Oncol Lett. 2017;14:3429–36. https://doi.org/10.3892/OL.2017.6607.
Jiang CF, Li DM, Shi ZM, et al. Estrogen regulates miRNA expression: implication of estrogen receptor and miR-124/AKT2 in tumor growth and angiogenesis. Oncotarget. 2016;7:36940–55. https://doi.org/10.18632/ONCOTARGET.9230.
Zhou Z, Lv J, Wang J, et al. Role of microRNA-124 as a prognostic factor in multiple neoplasms: a meta-analysis. Dis Markers. 2019;2019:1654780. https://doi.org/10.1155/2019/1654780.
Dong LL, Chen LM, Wang WM, Zhang LM. Decreased expression of microRNA-124 is an independent unfavorable prognostic factor for patients with breast cancer. Diagn Pathol. 2015;10:45. https://doi.org/10.1186/S13000-015-0257-5.
Zhang L, Chen X, Liu B, Han J. MicroRNA-124-3p directly targets PDCD6 to inhibit metastasis in breast cancer. Oncol Lett. 2018;15:984–90. https://doi.org/10.3892/OL.2017.7358.
Liu C, Xing H, Guo C, et al. MiR-124 reversed the doxorubicin resistance of breast cancer stem cells through STAT3/HIF-1 signaling pathways. Cell Cycle. 2019;18:2215–27. https://doi.org/10.1080/15384101.2019.1638182.
Bi WP, Xia M, Wang XJ. miR-137 suppresses proliferation, migration and invasion of colon cancer cell lines by targeting TCF4. Oncol Lett. 2018;15:8744–8. https://doi.org/10.3892/OL.2018.8364.
Zhao Y, Li Y, Lou G, et al. MiR-137 targets estrogen-related receptor alpha and impairs the proliferative and migratory capacity of breast cancer cells. PLoS ONE. 2012;7: e39102. https://doi.org/10.1371/JOURNAL.PONE.0039102.
Onyido EK, Sweeney E, Nateri AS. Wnt-signalling pathways and microRNAs network in carcinogenesis: experimental and bioinformatics approaches. Mol Cancer. 2016;15:56. https://doi.org/10.1186/S12943-016-0541-3.
Menck K, Heinrichs S, Wlochowitz D, et al. WNT11/ROR2 signaling is associated with tumor invasion and poor survival in breast cancer. J Exp Clin Cancer Res. 2021;40:395. https://doi.org/10.1186/S13046-021-02187-Z/FIGURES/6.
Koni M, Pinnarò V, Brizzi MF. The Wnt signalling pathway: a tailored target in cancer. Int J Mol Sci. 2020;21:7697. https://doi.org/10.3390/IJMS21207697.
Gonzalez DM, Medici D. Signaling mechanisms of the epithelial-mesenchymal transition. Sci Signal. 2014. https://doi.org/10.1126/SCISIGNAL.2005189.
Caldon CE. Estrogen signaling and the DNA damage response in hormone dependent breast cancers. Front Oncol. 2014;4:106. https://doi.org/10.3389/FONC.2014.00106/BIBTEX.
Jiménez-Salazar JE, Damian-Ferrara R, Arteaga M, et al. Non-Genomic actions of estrogens on the DNA repair pathways are associated with chemotherapy resistance in breast cancer. Front Oncol. 2021;11: 631007. https://doi.org/10.3389/FONC.2021.631007.