Phản ứng của dinh dưỡng đất, hoạt động enzyme và cộng đồng nấm đối với sự sẵn có của biochar trong rễ của cây táo vùng núi

Springer Science and Business Media LLC - Tập 489 - Trang 277-293 - 2023
Rafiq Ahmad1,2, Jianen Gao1,2,3, Wenzheng Li1,2, Yuanyuan Zhang1,2, Zhe Gao3, Abdullah Khan4, Izhar Ali4, Saif Ullah4, Shah Fahad5
1Institute of Soil and Water Conservation, Northwest A&F University, Yangling, China
2Institute of Soil and Water Conservation, CAS&MWR, Yangling, China
3College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling, China
4College of Agriculture, Guangxi University, Nanning, China
5Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, Pakistan

Tóm tắt

Ứng dụng biochar là một biện pháp hiệu quả để cải thiện các tính chất hóa học của đất. Tuy nhiên, ảnh hưởng của nó đến hoạt động enzyme và sức khỏe đất, đặc biệt là sự đa dạng nấm, còn thiếu trong vùng rễ của cây táo vùng núi. Một thí nghiệm trong chậu đã được thực hiện trong suốt một năm với sáu mức độ biochar khác nhau [CK (0), T1 (2), T2 (4), T3 (6), T4 (8) và T5 (10) t ha−1] và một liều cơ bản của phân bón vô cơ. Các phát hiện từ thí nghiệm cho thấy: (i) So với điều trị CK, điều trị bổ sung biochar (T5) trong các tháng (3, 6, 9, và 12) đã cải thiện đáng kể các thuộc tính lý hóa của đất và hoạt động enzyme [urease (UE), phosphatase kiềm (ALP), catalase (CAT), và sucrase (SC)]. (ii) T5 của điều trị bổ sung biochar so với CK đã giảm đáng kể sự phong phú tương đối chi phối của ngành Ascomycota. Tuy nhiên, các thành viên thuộc ngành Basidiomycota và Chytridiomycota cho thấy xu hướng tối ưu với các điều trị bổ sung biochar. Tương tự, các chi nấm có phong phú tương đối lớn nhất trong T5 là Coprinellus, tiếp theo là Helminthosporium, Gibberella, Coniothyrium, Paraconiothyrium, và Aplosporella. Hơn nữa, Alternaria và Amanita là hai chi duy nhất cho thấy xu hướng thấp nhất với các điều trị bổ sung biochar. (iii) Sự phong phú và đa dạng nấm của các điều trị bổ sung biochar thể hiện xu hướng thấp hơn so với điều trị CK. Hơn nữa, tương quan heatmap là tiêu cực giữa Ascomycota với chất hữu cơ trong đất (SOM) và tổng nitơ (T.N), và Mucoromycota và Olpidiomycota với hoạt động của UE, ALP và SC. Điều trị bổ sung biochar (T5) với phân bón vô cơ cần thiết là quan trọng để nâng cao các đặc tính của đất, điều này có thể hỗ trợ năng suất của vườn táo.

Từ khóa

#biochar #enzyme activities #fungal diversity #soil health #apple trees

Tài liệu tham khảo

Abujabhah IS, Bound SA, Doyle R, Bowman JP (2016) Effects of biochar and compost amendments on soil physico-chemical properties and the total community within a temperate agricultural soil. Appl Soil Ecol 98:243–253 Aguilar-Trigueros CA, Powell JR, Anderson IC, Antonovics J, Rillig MC (2014) Ecological understanding of root-infecting fungi using trait-based approaches. Trends Plant Sci 19(7):432–438. https://doi.org/10.1016/j.tplants.2014.02.006 Ahmad R, Gao J, Gao Z, Khan A, Ali I, Fahad S (2022) Influence of biochar on soil nutrients and associated Rhizobacterial communities of mountainous apple trees in northern loess plateau China. Microorganisms 10:2078. https://doi.org/10.3390/microorganisms10102078 Ajema L (2018) Effects of biochar application on beneficial soil organism. International journal of research studies in science. Eng Technol 5:9–18 Ali I, Ullah S, He L, Zhao Q, Iqbal A, Wei S, Jiang L (2020) Combined application of biochar and nitrogen fertilizer improves rice yield, microbial activity and N-metabolism in a pot experiment. PeerJ 8:e10311. https://doi.org/10.7717/peerj.10311 Ali I, Yuan P, Ullah S, Iqbal A, Zhao Q, Liang H, Jiang L (2022) Biochar amendment and nitrogen fertilizer contribute to the changes in soil properties and microbial communities in a Paddy field. Front Microbiol 13:834751–834751. https://doi.org/10.3389/fmicb.2022.834751 Burke DJ, Weintraub MN, Hewins CR, Kalisz S (2011) Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biol Biochem 43(4):795–803. https://doi.org/10.1016/j.soilbio.2010.12.014 Chen H, Yang X, Wang H, Sarkar B, Shaheen SM, Gielen G, Rinklebe J (2020) Animal carcass-and wood-derived biochars improved nutrient bioavailability, enzyme activity, and plant growth in metal-phthalic acid ester co-contaminated soils: a trial for reclamation and improvement of degraded soils. J Environ Manag 261:110246. https://doi.org/10.1016/j.jenvman.2020.110246 Chen LF, He ZB, Wu XR, Du J, Zhu X, Lin PF, Kong JQ (2021) Linkages between soil respiration and microbial communities following afforestation of alpine grasslands in the northeastern Tibetan plateau. Appl Soil Ecol 161:103882. https://doi.org/10.1016/j.apsoil.2021.103882 Dai Z, Barberán A, Li Y, Brookes PC, Xu J (2017) Bacterial community composition associated with pyrogenic organic matter (biochar) varies with pyrolysis temperature and colonization environment. Msphere 2(2):e00085–e00017. https://doi.org/10.1128/mSphere.00085-17 Dai Z, Enders A, Rodrigues JL, Hanley KL, Brookes PC, Xu J, Lehmann J (2018) Soil fungal taxonomic and functional community composition as affected by biochar properties. Soil Biol Biochem 126:159–167. https://doi.org/10.1016/j.soilbio.2018.09.001 Ding Y, Liu Y, Liu S, Li Z, Tan X, Huang X, Zheng B (2016) Biochar to improve soil fertility. A review. Agron Sustain Dev 36(2):1–18. https://doi.org/10.1007/s13593-016-0372-z Ding T, Yan Z, Zhang W, Duan T (2021) Green manure crops affected soil chemical properties and fungal diversity and community of apple orchard in the loess plateau of China. J Soil Sci Plant Nutr 21(2):1089–1102. https://doi.org/10.1007/s42729-021-00424-0 Downie A, Crosky A, Munroe P (2009) Physical properties of biochar. Biochar for environmental management: Science and technology, 1 Fan W, Wu J (2021) Changes in soil fungal community on SOC and POM accumulation under different straw return modes in dryland farming. Ecosyst Health Sustain 7(1):1935326. https://doi.org/10.1080/20964129.2021.1935326 Frąc M, Pertile G, Panek J, Gryta A, Oszust K, Lipiec J, Usowicz B (2021) Mycobiome composition and diversity under the long-term application of spent mushroom substrate and chicken manure. Agronomy 11(3):410. https://doi.org/10.3390/agronomy11030410 Gao L, Wang R, Shen G, Zhang J, Meng G, Zhang J (2017) Effects of biochar on nutrients and the microbial community structure of tobacco-planting soils. J Soil Sci Plant Nutr 17(4):884–896. https://doi.org/10.4067/S0718-95162017000400004 Glaser B, Birk JJ (2012) State of the scientific knowledge on properties and genesis of anthropogenic dark earths in Central Amazonia (terra preta de Índio). Geochim Cosmochim Acta 82:39–51. https://doi.org/10.1016/j.gca.2010.11.029 Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biol Fertil Soils 35(4):219–230. https://doi.org/10.1007/s00374-002-0466-4 Gomez JD, Denef K, Stewart CE, Zheng J, Cotrufo MF (2014) Biochar addition rate influences soil microbial abundance and activity in temperate soils. Eur J Soil Sci 65(1):28–39. https://doi.org/10.1111/ejss.12097 Guan SY, Zhang D, Zhang Z (1986) Soil enzyme and its research methods. China Agriculture press, Beijing, 1986, p 274–297 Gul S, Whalen JK, Thomas BW, Sachdeva V, Deng H (2015) Physico-chemical properties and microbial responses in biochar-amended soils: mechanisms and future directions. Agric Ecosyst Environ 206:46–59. https://doi.org/10.1016/j.agee.2015.03.015 Guo J, Liu W, Zhu C, Luo G, Kong Y, Ling N, Guo S (2018) Bacterial rather than fungal community composition is associated with microbial activities and nutrient-use efficiencies in a paddy soil with short-term organic amendments. Plant Soil 424(1):335–349. https://doi.org/10.1007/s11104-017-3547-8 Guo L, Yu H, Niu W, Kharbach M (2021) Biochar promotes nitrogen transformation and tomato yield by regulating nitrogen-related microorganisms in tomato cultivation soil. Agronomy 11(2):381. https://doi.org/10.3390/agronomy11020381 Han G, Chen Q, Zhang S, Li G, Yi X, Feng C, Lan J (2020) Variations in fungal diversity in a biochar-treated continuous cotton-cropped soil environment through metagenomic based analyses. Pol J Environ Stud 29(5). https://doi.org/10.15244/pjoes/113648 Hawksworth DL (2001) The magnitude of fungal diversity: the 1• 5 million species estimate revisited. Mycol Res 105(12):1422–1432. https://doi.org/10.1017/S0953756201004725 Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr 5(4):5–4. https://doi.org/10.1128/microbiolspec.FUNK-0052-2016 Hu L, Cao L, Zhang R (2014) Bacterial and fungal taxon changes in soil microbial community composition induced by short-term biochar amendment in red oxidized loam soil. World J Microbiol Biotechnol 30(3):1085–1092. https://doi.org/10.1007/s11274-013-1528-5 Hua L, Gao J, Zhou M, Bai S (2021) Impacts of relative elevation on soil nutrients and apple quality in the hilly-gully region of the loess plateau, China. Sustainability 13(3):1293. https://doi.org/10.3390/su13031293 Iqbal A, Ali I, Yuan P, Khan R, Liang H, Wei S, Jiang L (2022) Combined application of manure and chemical fertilizers alters soil environmental variables and improves soil fungal community composition and Rice grain yield. Front Microbiol 2481. https://doi.org/10.3389/fmicb.2022.856355 Jaafar NM (2014) Biochar as a habitat for arbuscular mycorrhizal fungi. In: Mycorrhizal fungi: use in sustainable agriculture and land restoration. Springer, Berlin, Heidelberg, pp 297–311. https://doi.org/10.1007/978-3-662-45370-4 Jiang Y, Wang X, Zhao Y, Zhang C, Jin Z, Shan S, Ping L (2021) Effects of biochar application on enzyme activities in tea garden soil. Front Bioeng Biotechnol 9:728530. https://doi.org/10.3389/fbioe.2021 Jiang J, Wang Y, Yu D, Hou R, Ma X, Liu J, Li Y (2022) Combined addition of biochar and garbage enzyme improving the humification and succession of fungal community during sewage sludge composting. Bioresour Technol 346:126344. https://doi.org/10.1016/j.biortech.2021.126344 Jiao S, Chen W, Wang J, Du N, Li Q, Wei G (2018) Soil microbiomes with distinct assemblies through vertical soil profiles drive the cycling of multiple nutrients in reforested ecosystems. Microbiome 6(1):1–13. https://doi.org/10.1186/s40168-018-0526-0 Jindo K, Suto K, Matsumoto K, García C, Sonoki T, Sanchez-Monedero MA (2012) Chemical and biochemical characterization of biochar-blended composts prepared from poultry manure. Bioresour Technol 110:396–404. https://doi.org/10.1016/j.biortech.2012.01.120 Jones DL, Rousk J, Edwards-Jones G, DeLuca TH, Murphy DV (2012) Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biol Biochem 45:113–124. https://doi.org/10.1016/j.soilbio.2011.10.012 Lehmann J, Rillig MC, Thies J, Masiello CA, Hockaday WC, Crowley D (2011) Biochar effects on soil biota–a review. Soil Biol Biochem 43(9):1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022 Li S, Shangguan Z (2018) Positive effects of apple branch biochar on wheat yield only appear at a low application rate, regardless of nitrogen and water conditions. J Soils Sediments 18(11):3235–3243. https://doi.org/10.1007/s11368-018-1994-3 Li P, Li Y, Zheng X, Ding L, Ming F, Pan A, Tang X (2018) Rice straw decomposition affects diversity and dynamics of soil fungal community, but not bacteria. J Soils Sediments 18(1):248–258. https://doi.org/10.1007/s11368-017-1749-6 Li S, Ma Q, Zhou C, Yu W, Shangguan Z (2021) Applying biochar under topsoil facilitates soil carbon sequestration: a case study in a dryland agricultural system on the loess plateau. Geoderma 403:115186. https://doi.org/10.1016/j.geoderma.2021.115186 Liang B, Ma C, Fan L, Wang Y, Yuan Y (2020) Compost amendment alters soil fungal community structure of a replanted apple orchard. Arch Agron Soil Sci 67(6):739–752. https://doi.org/10.1080/03650340.2020.1757074 Liu Y, Zhu J, Gao W, Guo Z, Xue C, Pang J, Shu L (2019) Effects of biochar amendment on bacterial and fungal communities in the reclaimed soil from a mining subsidence area. Environ Sci Pollut Res 26(33):34368–34376. https://doi.org/10.1007/s11356-019-06567-z Masto RE, Kumar S, Rout TK, Sarkar P, George J, Ram LC (2013) Biochar from water hyacinth (Eichornia crassipes) and its impact on soil biological activity. Catena 111:64–71. https://doi.org/10.1016/j.catena.2013.06.025 Meng L, Sun T, Li M, Saleem M, Zhang Q, Wang C (2019) Soil-applied biochar increases microbial diversity and wheat plant performance under herbicide fomesafen stress. Ecotoxicol Environ Saf 171:75–83. https://doi.org/10.1016/j.ecoenv.2018.12.065 Mierzwa-Hersztek M, Gondek K, Klimkowicz-Pawlas A, Chmiel MJ, Dziedzic K, Taras H (2019) Assessment of soil quality after biochar application based on enzymatic activity and microbial composition. Int Agrophysics 33(3). https://doi.org/10.31545/intagr/110807 Millanes AM, Diederich P, Ekman S, Wedin M (2011) Phylogeny and character evolution in the jelly fungi (Tremellomycetes, Basidiomycota, Fungi). Mol Phylogenet Evol 61(1):12–28. https://doi.org/10.1016/j.ympev.2011.05.014 Mukherjee S, Mavi MS, Singh J, Singh BP (2020) Rice-residue biochar influences phosphorus availability in soil with contrasting P status. Arch Agron Soil Sci 66(6):778–791. https://doi.org/10.1080/03650340.2019.1639153 Muneer MA, Wang P, Lin C, Ji B (2020) Potential role of common mycorrhizal networks in improving plant growth and soil physicochemical properties under varying nitrogen levels in a grassland ecosystem. Glob Ecol Conserv 24:e01352. https://doi.org/10.1016/j.gecco.2020.e01352 Neilsen G, Forge T, Angers D, Neilsen D, Hogue E (2014) Suitable orchard floor management strategies in organic apple orchards that augment soil organic matter and maintain tree performance. Plant and Soil 378:325–335. https://doi.org/10.1007/s11104-014-2034-8 Nelissen V, Ruysschaert G, Manka’Abusi D, D’Hose T, De Beuf K, Al-Barri B, Boeckx P (2015) Impact of a woody biochar on properties of a sandy loam soil and spring barley during a two-year field experiment. Eur J Agron 62:65–78. https://doi.org/10.1016/j.eja.2014.09.006 Novak JM, Spokas KA, Cantrell KB, Ro KS, Watts DW, Glaz B, Hunt PG (2014) Effects of biochars and hydrochars produced from lignocellulosic and animal manure on fertility of a Mollisol and Entisol. Soil Use Manag 30(2):175–181. https://doi.org/10.1111/sum.12113 Ouyang L, Tang Q, Yu L, Zhang R (2014) Effects of amendment of different biochars on soil enzyme activities related to carbon mineralization. Soil Res 52(7):706–716. https://doi.org/10.1071/SR14075 Pokharel P, Ma Z, Chang SX (2020) Biochar increases soil microbial biomass with changes in extra-and intracellular enzyme activities: a global meta-analysis. Biochar 2(1):65–79. https://doi.org/10.1007/s42773-020-00039-1 Qiang M, Gao JE, Han J, Zhang H, Lin T, Long S (2020) How adding biochar improves loessal soil fertility and sunflower yield on consolidation project land on the Chinese loess plateau. Pol J Environ Stud 29(5):3759–3769. https://doi.org/10.15244/pjoes/118204 Rao DLN (2007) Microbial diversity, soil health and sustainability. J-Indian Soc Soil Sci 55(4):392 Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Fierer N (2010) Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4(10):1340–1351. https://doi.org/10.1038/ismej.2010.58 Ryckeboer J, Mergaert J, Vaes K, Klammer S, De Clercq D, Coosemans J, Swings J (2003) A survey of bacteria and fungi occurring during composting and self-heating processes. Ann Microbiol 53(4):349–410 Schimmelpfennig S, Glaser B (2012) One step forward toward characterization: some important material properties to distinguish biochars. J Environ Qual 41(4):1001–1013. https://doi.org/10.2134/jeq2011.0146 Shen RF, Zhao XQ (2015) Role of soil microbes in the acquisition of nutrients by plants. Acta Ecol Sin 35(20):6584–6591. https://doi.org/10.5846/stxb201506051140 Sun K, Fu L, Song Y, Yuan L, Zhang H, Wen D, Wang K (2021) Effects of continuous cucumber cropping on crop quality and soil fungal community. Environ Monit Assess 193(7):1–12. https://doi.org/10.1007/s10661-021-09136-5 Suo GD, Xie YS, Zhang Y, Luo H (2019) Long-term effects of different surface mulching techniques on soil water and fruit yield in an apple orchard on the loess plateau of China. Sci Hortic 246:643–651. https://doi.org/10.1016/j.scienta.2018.11.028 Tarin MWK, Fan L, Xie D, Tayyab M, Rong J, Chen L, Zheng Y (2021) Response of soil fungal diversity and community composition to varying levels of bamboo biochar in red soils. Microorganisms 9(7):1385. https://doi.org/10.3390/microorganisms9071385 Thies JE, Rillig MC (2012) Characteristics of biochar: biological properties. In: Biochar for environmental management. Routledge, pp 117–138 Val-Moraes SP, Nascimbem Pedrinho EA, Lemos EGM, Carareto-Alves LM (2013) Molecular identification of fungal communities in a soil cultivated with vegetables and soil suppressiveness to Rhizoctonia solani. Appl Environ Soil Sci 2013. https://doi.org/10.1155/2013/268768 Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7(3):477–486. https://doi.org/10.1038/ismej.2012.116 Waldrop MP, Balser TC, Firestone MK (2000) Linking microbial community composition to function in a tropical soil. Soil Biol Biochem 32(13):1837–1846. https://doi.org/10.1016/S0038-0717(00)00157-7 Wang FG, Song L, Feng Y, Hong YC, Cui DJ, Yuan YB (2011) Characteristics of soil microbiology in different planting-life orchard acid soils. Chin J Soil Sci 42:46–50 Wang L, Yang F, Yaoyao E, Yuan J, Raza W, Huang Q, Shen Q (2016) Long-term application of bioorganic fertilizers improved soil biochemical properties and microbial communities of an apple orchard soil. Front Microbiol 7:1893. https://doi.org/10.3389/fmicb.2016.0 Wang R, Fu W, Wang J, Zhu L, Wang L, Wang J, Ahmad Z (2019) Application of rice grain husk derived biochar in ameliorating toxicity impacts of cu and Zn on growth, physiology and enzymatic functioning of wheat seedlings. Bull Environ Contam Toxicol 103(4):636–641. https://doi.org/10.1007/s00128-019-02705-y Wang J, Huang R, Zhu L, Guan H, Lin L, Fang H, Li X (2022) The effects of biochar on microbial community composition in and beneath biological soil crusts in a Pinus massoniana lamb. Plantation. Forests 13(7):1141. https://doi.org/10.3390/f13071141 Xu W, Sun H, Jin J, Cheng J (2020) Predicting the potential distribution of apple canker pathogen (Valsa Mali) in China under climate change. Forests 11(11):1126. https://doi.org/10.3390/f11111126 Yan T, Xue J, Zhou Z, Wu Y (2022) Biochar and compost amendments alter the structure of the soil fungal network in a karst mountainous area. Land Degrad Dev 33(5):685–697. https://doi.org/10.1002/ldr.4148 Yang Y, Dou Y, Huang Y, An S (2017) Links between soil fungal diversity and plant and soil properties on the loess plateau. Front Microbiol 8:2198. https://doi.org/10.3389/fmicb.2017.0 Yang M, Wang S, Zhao X, Gao X, Liu S (2020) Soil properties of apple orchards on China's loess plateau. Sci Total Environ 723:138041. https://doi.org/10.1016/j.scitotenv.2020.138041 Yang J, Duan Y, Guo Y, Li Z, Ni X, Zhang J, Li H (2022) Grass waste utilization to alter aggregate-related carbon chemical composition and fungal community structure in apple orchard. Chemosphere 287:132404. https://doi.org/10.1016/j.chemosphere.2021.132404 Yao Q, Liu J, Yu Z, Li Y, Jin J, Liu X, Wang G (2017) Three years of biochar amendment alters soil physiochemical properties and fungal community composition in a black soil of Northeast China. Soil Biol Biochem 110:56–67. https://doi.org/10.1016/j.soilbio.2017.03.005 Yin D, Li H, Wang H, Guo X, Wang Z, Lv Y, Lan Y (2021) Impact of different biochars on microbial community structure in the rhizospheric soil of rice grown in albic soil. Molecules 26(16):4783. https://doi.org/10.3390/molecules26164783 Yu H, Shao W, Xu G, Xie N, Yang X, Gao D, Si P (2023) Soil amendment with sorbitol and mannitol changes the soil microbial community and its enzymatic activities. J Soils Sediments 1-20. https://doi.org/10.1007/s11368-022-03394-7 Zhang A, Liu Y, Pan G, Hussain Q, Li L, Zheng J, Zhang X (2012) Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China plain. Plant Soil 351(1):263–275. https://doi.org/10.1007/s11104-011-0957-x Zhang M, Riaz M, Zhang L, Xia H, El-Desouki Z, Jiang C (2019) Response of fungal communities in different soils to biochar and chemical fertilizers under simulated rainfall conditions. Sci Total Environ 691:654–663. https://doi.org/10.1016/j.scitotenv.2019.07.151 Zhang M, Liu Y, Wei Q, Gou J (2021a) Effects of short-term application of Moutai lees biochar on nutrients and fungal community structure in yellow soil of Guizhou. Environ Sci Pollut Res 28(47):67404–67413. https://doi.org/10.1007/s11356-021-15001-2 Zhang M, Zhang L, Riaz M, Xia H, Jiang C (2021b) Biochar amendment improved fruit quality and soil properties and microbial communities at different depths in citrus production. J Clean Prod. https://doi.org/10.1016/j.jclepro.2021.126062 Zhang H, Ullah F, Ahmad R, Ali Shah SU, Khan A, Adnan M (2022) Response of soil proteobacteria to biochar amendment in sustainable agriculture- a mini review. J Soil Plant Environ 1(2):16–30. https://doi.org/10.56946/jspae.v1i2.56 Zhao L, Cao X, Mašek O, Zimmerman A (2013) Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J Hazard Mater 256:1–9. https://doi.org/10.1016/j.jhazmat.2013.04.015 Zheng J, Chen J, Pan G, Liu X, Zhang X, Li L, Jinwei Z (2016) Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from Southwest China. Sci Total Environ 571:206–217. https://doi.org/10.1016/j.scitotenv.2016.07.135 Zhou J, Jiang X, Zhou B, Zhao B, Ma M, Guan D, Qin J (2016) Thirty four years of nitrogen fertilization decreases fungal diversity and alters fungal community composition in black soil in Northeast China. Soil Biol Biochem 95:135–143. https://doi.org/10.1016/j.soilbio.2015.12.012