Respiratory control inMicrococcus lysodeikticus
Tóm tắt
The respiration rate of Pi-deprived cells ofMicrococcus lysodeikticus is markedly increased by Pi, and returns to the original level following Pi consumption. The stimulation of the respiration was found to be specific for Pi and arsenate. Although succinate and valinomycin enchanced the respiration of both Pi-grown and Pi-deprived cells, only the latter could be further stimulated by Pi. The effect of Pi on the respiration rate was found to be concentration dependent. The control of respiration by Pi is due to its rapid uptake and its subsequent polymerization to polyphosphate via ATP. Both of these processes are coupled to proton influx into the cell, and thus stimulate the proton efflux and the respiration rate.
Tài liệu tham khảo
Alfasi, H., Friedberg, D., and Friedberg, I. (1979).J. Bacteriol. 137 69–72.
Avron, M. (1960).Biochim. Biophys. Acta 40 257–272.
Beechey, R. B., and Ribbons, W. D. (1972). InMethods in Microbiology (Norris, J. R., and Ribbons, D. W., eds.), Vol. 6, Academic Press, New York, pp. 25–54.
Bovell, C. R., Packer, L., and Helgerson, R. (1963).Biochim. Biophys. Acta 75 257–266.
Burstein, C., Tiankova, L., and Kepes, A. (1979).Eur. J. Biochem. 94 387–392.
Chance, B., and Williams, G. R. (1955a).J. Biol. Chem. 217 383–393.
Chance, B., and Williams, G. R. (1955b).Adv. Enzymol. 17 65–134.
Chance, B., and Baltscheffsky, H. (1958).Biochem. J. 68 283–297.
Eilerman, L. J. M., Pandit-Hovenkamp, H. G., and Kolk, A. H. J. (1970).Biochim. Biophys. Acta 197 25–30.
Eilerman, L. J. M., Pandit-Hovenkamp, H. G., Van der Meer-Van Buren, M., Kolk, A. H. J., and Feenstra, M. (1971).Biochim. Biophys. Acta 245 305–312.
Friedberg, I. (1977a).Biochim. Biophys. Acta 466 451–460.
Friedberg, I. (1977b).FEBS Lett. 81 264–266.
Friedberg, I., and Avigad, G. (1968).J. Bacteriol. 96 544–553.
Friedberg, I., and Avigad, G. (1970).Israel J. Med. Sci. 6 511–518.
Friedberg, I., and Kaback, H. R. (1980).J. Bacteriol. 142 651–658.
Gornell, A. G., Bardawill, C. J., and David, N. M. (1949).J. Biol. Chem. 177 751–766.
Haddock, B. A., and Jones, C. W. (1977).Bacteriol. Rev. 41 47–99.
Harold, F. M. (1972).Bacteriol. Rev. 36 172–230.
Harold, F. M., Altendorf, K. H., and Hirata, H. (1975).Ann. N.Y. Acad. Sci. 235 149–160.
Huberman, M., and Salton, M. R. J. (1979).Biochim. Biophys. Acta 547 230–240.
Ishikawa, S., and Lehninger, A. L. (1962).J. Biol. Chem. 237 2401–2408.
Jones, P., and Hamilton, W. A. (1970).FEBS Lett. 10 246–248.
Jones, C. W., Erickson, S. K., and Ackrell, B. A. C. (1971a).FEBS Lett. 13 33–35.
Jones, C. W., Ackrell, B. A. C., and Erickson, S. K. (1971b).Biochim. Biophys. Acta 245 54–62.
Kornberg, A., Kornberg, S. R., and Simms, E. S. (1956).Biochim. Biophys. Acta 20 215–227.
Lichtenstein, J., Barner, H. D., and Cohn, S. S. (1960).J. Biol. Chem. 235 457–465.
Mitchell, P. (1973).J. Bioenerg. 4 63–91.
Racker, E. (1976).A New Look at Mechanisms in Bioenergetics Academic Press, New York.
Revsin, B., and Brodie, A. F. (1967).Biochem. Biophys. Res. Commun. 28 635–640.
Rosen, B. P., and Kashket, E. R. (1978). InBacterial Transport (Rosen, B. P., ed.), Marcel Dekker, New York, pp. 559–620.
Scholes, P., and Mitchell, P. (1970).J. Bioenerg. 1 61–72.
Scocca, J. J., and Pinchot, G. B. (1965).Fed. Proc. 24 544.
Scocca, J. J., and Pinchot, G. B. (1968).Arch. Biochem. Biophys. 124 206–217.
Tsuchiya, T., and Rosen, B. P. (1980).FEBS Lett. 120 128–130.