Tái chế tài nguyên từ chất thải COVID-19 thông qua quá trình nhiệt phân: một phương pháp kinh tế tuần hoàn

Springer Science and Business Media LLC - Tập 2 - Trang 211-220 - 2021
Biswajit Debnath1,2, Shiladitya Ghosh3, Neelanjan Dutta4
1Chemical Engineering Department, Jadavpur University, Kolkata, India
2Department of Mathematics, ASTUTE, Aston University, Birmingham, UK
3Department of Food Technology, Guru Nanak Institute of Technology, Kolkata, India
4Department of Civil Engineering, NIT Sikkim, Sikkim, India

Tóm tắt

Kể từ cuối năm 2019, đại dịch COVID-19 đã ảnh hưởng đến 220 quốc gia và hiện tại phần lớn thế giới đang đối mặt với cơn thịnh nộ của làn sóng thứ hai. Một trong những hệ quả của đại dịch hiện tại là việc phát sinh một lượng lớn "chất thải COVID" polymer rắn bao gồm chất thải y tế, chất thải thiết bị bảo hộ cá nhân (PPE), chất thải từ bao bì và các chất thải gia đình khác có khả năng lây nhiễm. Phương pháp nhiệt hóa là phương pháp điều trị và tiêu hủy chất thải polymer lây nhiễm hiệu quả hơn cả. Thông thường, thiêu hủy được sử dụng để đảm bảo tiêu diệt hoàn toàn các mầm bệnh, tuy nhiên đây không phải là phương pháp tiết kiệm tài nguyên. Nhiệt phân là một giải pháp bền vững có thể xử lý dòng chất thải COVID hiện tại trong ngắn hạn và dài hạn, mang lại nhiên liệu và sản phẩm vật liệu quý giá. Các tài liệu được công bố gần đây trong lĩnh vực này đã chỉ ra rõ ràng tính linh hoạt của công nghệ này trong việc xử lý hiệu quả cả dòng polymer đơn và hỗn hợp. Dựa trên những thực tế này, chúng tôi đề xuất một khung phục hồi tài nguyên tận dụng nhiệt phân như là phương pháp chuyển đổi chủ yếu để xử lý hiệu quả dòng chất thải COVID. Khung của chúng tôi đề xuất cách thức các nhà máy này có thể hoạt động và hữu ích trong việc tạo ra doanh thu trong thời gian hậu đại dịch. Chúng tôi hy vọng rằng việc áp dụng nhiệt phân một cách có trách nhiệm sẽ dẫn dắt chúng ta đến một mô hình nền kinh tế tuần hoàn.

Từ khóa

#COVID-19; chất thải; nhiệt phân; kinh tế tuần hoàn; tái chế; polymer; virus

Tài liệu tham khảo

Woldometer, (2021a). Covid-19 coronavirus pandemic. Accessed 2021, January 21. https://www.worldometers.info/coronavirus/. Woldometer, (2021b). Covid-19 coronavirus pandemic. Accessed 2021, May 28. https://www.worldometers.info/coronavirus/ Spinelli A, Pellino G (2020) COVID-19 pandemic: perspectives on an unfolding crisis. Journal of British Surgery 107(7):785–787 Tyagi K, Ghosh A, Dipti NAIR, Pyrolysis K, Bhandari PS, Ansari IA, Misra A (2021) Breakthrough COVID19 infections after vaccinations in healthcare and other workers in a chronic care medical facility in New Delhi, India. Clinical Research & Reviews, Diabetes & Metabolic Syndrome Cdc.gov. (2021). Different COVID-19 vaccines. Centers for Disease Control and Prevention. https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines.html. Accessed 14 May 2021 Seruminstitute.com (2021). Serum Institute of India - ChAdOx1 nCoV- 19 Corona Virus Vaccine (Recombinant) - COVISHIELD. Seruminstitute.com. https://www.seruminstitute.com/product_covishield.php. Accessed 14 May 2021 The Lancet (2021) India’s COVID-19 emergency. Lancet 397(10286):1683 Possas, C., de Souza Antunes, A. M., de Oliveira, A. M., de Souza Mendes, C. D. U., Ramos, M. P., Schumacher, S. D. O. R., & Homma, A. (2021). Vaccine innovation for pandemic preparedness: patent landscape, global sustainability, and circular bioeconomy in post-COVID-19 era. Circular Economy and Sustainability, 1-23 Hantoko D, Li X, Pariatamby A, Yoshikawa K, Horttanainen M, Yan M (2021) Challenges and practices on waste management and disposal during COVID-19 pandemic. J Environ Manag 286:112140 Leal Filho W, Voronova V, Kloga M, Paço A, Minhas A, Salvia AL et al (2021) COVID-19 and waste production in households: a trend analysis. Sci Total Environ 777:145997 Tang, W. (2020). The medical waste related to COVID-2019 is cleaned up every day—the medical waste treatment market needs to be standardised. 21st Century Business Herald. http://www.21jingji.com/2020/3-12/xNMDEzODFfMTU0MjIxNQ.html. Accessed 14 May 2021. Agamuthu P, Barasarathi J (2020) Clinical waste management under COVID-19 scenario in Malaysia. Waste Manag Res 39(1):18–26. https://doi.org/10.1177/0734242X20959701 Prata JC, Silva AL, Walker TR, Duarte AC, Rocha-Santos T (2020) COVID-19 pandemic repercussions on the use and management of plastics. Environ Sci Technol 54(13):7760–7765 Hantoko, D., Li, X., Pariatamby, A., Yoshikawa, K., Horttanainen, M., Yan, M. (2021) Challenges and practices on waste management and disposal during COVID-19 pandemic. Journal of Environmental Management 286112140-10.1016/j.jenvman.2021.112140 Singh N, Tang Y, Ogunseitan OA (2020) Environmentally sustainable management of used personal protective equipment. Environ Sci Technol 54(14):8500–8502 Kampf G, Todt D, Pfaender S, Steinmann E (2020) Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. J Hosp Infect 104(3):246–251 Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, Tamin A, Harcourt JL, Thornburg NJ, Gerber SI, Lloyd-Smith JO (2020) Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. N Engl J Med 382(16):1564–1567 Mallapur, C. (2020). Indian households’ ineffective waste management is putting sanitation workers at risk of Covid-19. Scroll.in. https://scroll.in/article/958711/indian-households-ineffective-waste-management-is-putting-sanitation-workers-at-risk-of-covid-19. Accessed 14 May 2021 Antoniadou M, Varzakas T, Tzoutzas I (2021) Circular economy in conjunction with treatment methodologies in the biomedical and dental waste sectors. Circ Econ Sust. https://doi.org/10.1007/s43615-020-00001-0 Sarkodie, S. A., & Owusu, P. A. (2020). Impact of COVID-19 pandemic on waste management. Environment, Development and Sustainability. doi:10.1007/s10668-020-00956-y United Nations Environment Programme (UNEP), 2020. How to choose your waste management technology to treat COVID-19 waste. https://wedocs.unep.org/bitstream/handle/20.500.11822/32778/FS3.pdf. . World Health Organization (WHO), 2017. Safe management of wastes from health-care activities: a summary. https://apps.who.int/iris/bitstre am/handle/10665/259491/WHO-FWC-WSH-17.05-eng.pdf;jsessionid=77A8E6456068068F87A5FC473E3EC168?sequence =1. Accessed 14 May 2021 Nikolaou IE, Jones N, Stefanakis A (2021a) Circular economy and sustainability: the past, the present and the future directions. Circ Econ Sust 1:1–20. https://doi.org/10.1007/s43615-021-00030-3 Nikolaou IE, Jones N, Stefanakis A (2021b) Circular economy and sustainability: the past, the present and the directions. Circular Economy and Sustainability 1:1–20 Ghosh A, Debnath B, Ghosh SK, Das B, Sarkar JP (2018) Sustainability analysis of organic fraction of municipal solid waste conversion techniques for efficient resource recovery in India through case studies. Journal of Material Cycles and Waste Management 20(4):1969–1985 Dutta N, Gupta A (2021) An experimental study on conversion of high density polyethylene and polypropylene to liquid fuel. Clean Techn Environ Policy. https://doi.org/10.1007/s10098-021-02121-z Ghosh S, Das S, Chowdhury R (2019) Effect of pre-pyrolysis biotreatment of banana pseudo-stem (BPS) using synergistic microbial consortium: role in deoxygenation and enhancement of yield of pyro-oil. Energy Convers Manag 195:114–124 Dash A, Kumar S, Singh RK (2015) Thermolysis of medical waste (Waste Syringe) to liquid fuel using semi batch reactor. Waste and biomass valorization 6(4):507–514 Shah J, Jan MR (2014) Thermo-catalytic pyrolysis of polystyrene in the presence of zinc bulk catalysts. J Taiwan Inst Chem Eng 45(5):2494–2500 Martynis, M., Mulyazmi, Winanda, E., & Harahap, A. N. (2019). Thermal Pyrolysis of Polypropylene Plastic Waste into Liquid Fuel: Reactor Performance Evaluation. IOP Conference Series: Materials Science and Engineering, 543, 012047. doi:10.1088/1757-899x/543/1/012047 Osman AI, Farrell C, Al-Muhtaseb AH, Al-Fatesh AS, Harrison J, Rooney DW (2020) Pyrolysis kinetic modelling of abundant plastic waste (PET) and in-situ emission monitoring. Environ Sci Eur 32(1):1–12 Debnath B, Chowdhury R, Ghosh SK (2019) An analysis of e-waste recycling technologies from the chemical engineering perspective. In: In Waste Management and Resource Efficiency (pp. 879-888). Springer, Singapore Honus, S., Kumagai, S., Fedorko, G., Molnár, V., & Yoshioka, T. (2018). Pyrolysis gases produced from individual and mixed PE, PP, PS, PVC, and PET—Part I: Production and physical properties. Fuel, 221, 346–360. https://doi.org/10.1016/j.fuel.2018.02.074 Dharmaraj S, Ashokkumar V, Pandiyan R, Munawaroh HSH, Chew KW, Chen WH, Ngamcharussrivichai C (2021) Pyrolysis: an effective technique for degradation of COVID-19 medical wastes. Chemosphere 275:130092 Yousef S, Eimontas J, Striūgas N, Abdelnaby MA (2021) Pyrolysis kinetic behaviour and TG-FTIR-GC–MS analysis of coronavirus face masks. J Anal Appl Pyrolysis 156:105118 Lee SB, Lee J, Tsang YF, Kim YM, Jae J, Jung SC, Park YK (2021) Production of value-added aromatics from wasted COVID-19 mask via catalytic pyrolysis. Environ Pollut 283:117060 Jung S, Lee S, Dou X, Kwon EE (2021) Valorization of disposable COVID-19 mask through the thermo-chemical process. Chem Eng J 405:126658 Aragaw TA, Mekonnen BA (2021) Current plastics pollution threats due to COVID-19 and its possible mitigation techniques: a waste-to-energy conversion via Pyrolysis. Environmental Systems Research 10(1):1–11 Al-Salem SM, Lettieri P (2010) Kinetic study of high-density polyethylene (HDPE) pyrolysis. Chem Eng Res Des 88(12):1599–1606 Adeniyi AG, Ighalo JO (2020) Simulation of low density polyethylene (LDPE) pyrolysis and optimisation of pyro-oil yield. Int Polym Process 35(2):229–235 Das P, Tiwari P (2018) Valorization of packaging plastic waste by slow pyrolysis. Resour Conserv Recycl 128:69–77 Debnath B, Saha I, Mukherjee T, Mitra S, Das A, Das A (2021) Sorbents from waste materials: a circular economic approach. In: Sorbents Materials for Controlling Environmental Pollution (pp. 285-322). Elsevier Mukherjee, A., Debnath, B., & Ghosh, S. K. (2019). Carbon nanotubes as a resourceful product derived from waste plastic—a review. Waste Management and Resource Efficiency, 915-934 Halog, A., & Anieke, S. (2021). A review of circular economy studies in developed countries and its potential adoption in developing countries. Circular Economy and Sustainability, 1-22 Rudraenvsolution.com. (2020). Retrieved 20 July 2021, from http://www.rudraenvsolution.com/images/rudrainfo.pdf Pant KK, Naik SN, & Dwivedi U (2018) A process and two-step catalytic reactor system for the production of liquid hydrocarbons from plastic waste (Indian - Patent Application No.: 201811032378) IIT Delhi. (2021). Retrieved 21 July 2021, from https://www.facebook.com/IITDelhi/posts/4135105469871145 Sivagami K, Divyapriya G, Selvaraj R, Madhiyazhagan P, Sriram N, Nambi I (2021) Catalytic pyrolysis of polyolefin and multilayer packaging based waste plastics: a pilot scale study. Process Saf Environ Prot 149:497–506 Debnath B, Chowdhury R, Ghosh SK (2018) Sustainability of metal recovery from E-waste. Frontiers of environmental science & engineering 12(6):1–12 Ellsworth, B. (2019). Canadian firm turns non-recyclable plastics to fuel. Retrieved 21 July 2021, from https://www.aa.com.tr/en/asia-pacific/canadian-firm-turns-non-recyclable-plastics-to-fuel/1556029#:~:text=TRENTON%2C%20Canada,fuel%20the%20company's%20 truck%20fleet. Cecchin, A., Salomone, R., Deutz, P., Raggi, A., & Cutaia, L. (2021). What is in a name? The rising star of the circular economy as a resource-related concept for sustainable development. Circular Economy and Sustainability, 1–15