Resistance simulations for junctions of SW and MW carbon nanotubes with various metal substrates

Central European Journal of Physics - Tập 9 - Trang 519-529 - 2010
Yuri N. Shunin1,2, Yuri F. Zhukovskii2, Natalia Burlutskaya1, Stefano Bellucci3
1Information Systems Management Institute, Riga, Latvia
2Institute of Solid State Physics, University of Latvia, Riga, Latvia
3INFN Laboratori Nazionali di Frascati, Frascati, Italy

Tóm tắt

This theoretical study focuses on junctions between the carbon nanotubes (CNTs) and contacting metallic elements of a nanocircuit. Numerical simulations on the conductance and resistance of these contacts have been performed using the multiple scattering theory and the effective media cluster approach. Two models for CNT-metal contacts have been considered in this paper: a) first principles “liquid metal” model and b) semi-empirical model of “effective bonds” based on Landauer notions on ballistic conductivity. Within the latter, which is a more adequate description of chirality effects, we have simulated both single-wall (SW) and multi-wall (MW) CNTs with different morphology. Results of calculations on resistance for different CNT-Me contacts look quantitatively realistic (from several to hundreds kOhm, depending on chirality, diameter and thickness of MW CNT). The inter-wall transparency coefficient for MW CNT has been also simulated, as an indicator of possible ‘radial current’ losses.

Tài liệu tham khảo

M. Ahlskog, Ch. Laurent, M. Baxendale, M. Huhtala, In: H. S. Nalwa (Ed.), Encyclopedia of Nanoscience and Nanotechnology, Vol. 3 (American Sci. Publishers, Valencia, CA, 2004) 139 M.S. Dresselhaus, G. Dresselhaus, P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1996) S.J. Tans, R.M. Verschueren, C. Dekker, Nature 393, 49 (1998) J. Tersoff, Appl. Phys. Lett. 74, 2122 (1999) Yu.N. Shunin, K.K. Schwartz, In: R.C. Tennyson, A.E. Kiv (Eds.), Computer Modelling of Electronic and Atomic Processes in Solids (Kluwer Acad. Publisher, Dodrecht, Boston, London, 1997) 241 Yu.N. Shunin, DSc Habil. thesis, University of Latvia (Riga-Salaspils, Latvia, 1991) E.L. Economou, Green’s Functions in Quantum Physics, 3rd edition, Solid State Ser. Vol. 7 (Springer Verlag, Berlin, Heidelberg, 2006) J.M. Ziman, Models of Disorder (Cambridge Univ. Press, London, New York, 1979) R. Gaspar, Acta Phys. Acad. Sci. Hung. 2, 15 (1952) R. Gaspar, Acta Phys. Acad. Sci. Hung. 3, 263 (1954) J.C. Slater, The Self-Consistent Field for Molecules and Solids, Vol. 4 (McGraw-Hill Book Company, New York, 1974) H. Ehrenreich, L. Schwartz, The Electronic Structure of Alloys, Solid State Phys. Vol. 31 (Academic Press, New York, San Francisco, London, 1976) M.F. Lin, K.W.-K. Shung, Phys. Rev. B 47, 6617 (1993) G. Gumbs, G.R. Aizin, Phys. Rev. B 65, 195407 (2002) G. Gumbs, A. Balassis, Phys. Rev. B 71, 235410 (2005) Yu.N. Shunin, Yu.F. Zhukovskii, S. Bellucci, Computer Modellingand New Technologies 12(2), 66 (2008) P. Soven, Phys. Rev. 156, 809 (1967) D. Stone, A. Szafer, IBMJ. Res. Dev. 32, 384 (1988) F. Ding et al., Nano Lett. 8, 463 (2008) Yu.N. Shunin, In: H. Dosch, M.H. Van de Voorde (Eds.), GENNESYS White Paper (Max-Planck-Institutfür Metallforschung, Stuttgart, 2009) 8 S. Uryu, Phys. Rev. B 69, 075402 (2004) A.M. Lunde, K. Flensberg, A.-P. Jauho, Phys. Rev. B 71, 125408 (2005) Z. Kordrostami, M.H. Sheikhi, R. Mohammadzadegan, Fuller. Nanotub. Car. N. 16, 66 (2008) J.-O. Lee, J. Phys. D: Appl. Phys. 33, 1953 (2000)