Residual Stress and Buckling Patterns of Free‐standing Yttria‐stabilized‐zirconia Membranes Fabricated by Pulsed Laser Deposition

Fuel Cells - Tập 12 Số 4 - Trang 614-623 - 2012
Anna Evans1, Michel Prestat1, René Tölke1, Meike V. F. Heinz1, Ludwig J. Gauckler1, Yasser Safa2, Thomas Hocker2, J. Courbat3, D. Briand3, Ν. F. de Rooij3, Diana Courty4
1ETH Zurich, Nonmetallic Inorganic Materials, Wolfgang‐Pauli‐Strasse 10, CH‐8093 Zurich, Switzerland
2ZHAW Winterthur, Institute of Computational Physics, Wildbachstrasse 21, CH‐8400 Winterthur, Switzerland
3École Polytechnique Fédérale de Lausanne (EPFL), Institute of Microengineering, Rue Jaquet‐Droz 1, CH‐2002 Neuchâtel, Switzerland
4ETH Zurich, Laboratory for Nanometallurgy, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland

Tóm tắt

AbstractThe residual stress and buckling patterns of free‐standing 8 mol.% yttria‐stabilized‐zirconia (8YSZ) membranes prepared by pulsed laser deposition and microfabrication techniques on silicon substrates are investigated by wafer curvature, light microscopy, white light interferometry, and nanoindentation. The 300 nm thin 8YSZ membranes (390 μm × 390 μm) deposited at 25 °C are almost flat after free‐etching, whereas deposition at 700 °C yields strongly buckled membranes with a compressive stress of –1,100 ± 150 MPa and an out‐of‐plane‐displacement of 6.5 μm. These latter membranes are mechanically stable during thermal cycling up to 500 °C. Numerical simulations of the buckling shape using the Rayleigh–Ritz‐method and a Young's modulus of 200 GPa are in good agreement with the experimental data. The simulated buckling patterns are used to extract the local stress distribution within the free‐standing membrane which consists of tensile and compressive stress regions that are below the failure stresses. This is important regarding the application in, e.g., microsolid oxide fuel cell membranes which must be thermomechanically stable during microfabrication and device operation.

Từ khóa


Tài liệu tham khảo

10.1016/S0925-4005(03)00243-0

10.1016/j.jpowsour.2009.03.048

10.1149/1.2372592

10.1016/j.tsf.2009.12.073

10.1038/nnano.2011.43

10.1002/adfm.201002137

10.1016/0040-6090(89)90030-8

10.1016/S1359-6454(99)00286-4

10.1016/j.ssi.2009.12.019

10.1109/84.809057

10.1088/0960-1317/20/3/035027

S. C. Singhal K. Kendall High Temperature Solid Oxide Fuel Cells: Fundamentals Design and Applications.Elsevier Advanced Technology Oxford 2003.

10.1016/j.jpowsour.2008.09.094

10.1002/fuce.200800144

Lai B. K., 2010, Proc. SPIE – Int. Soc. Opt. Eng., 767916

10.1016/j.jpowsour.2010.02.079

10.1016/j.jpowsour.2010.09.066

10.1016/j.jpowsour.2010.10.068

10.1557/JMR.2008.0077

Garbayo I., 2009, Proc. SPIE – Int. Soc. Opt. Eng., 73621, 1

10.1166/jnn.2010.1837

10.1098/rspa.1909.0021

10.1111/j.1151-2916.1984.tb19534.x

R. M. Jones Buckling of Bars Plates and Shells Bull Ridge Publishing Blacksburg Viginia USA 2006 p.135.

Y. Safa and T. Hocker 9th Symposium on Fuel Cell and Battery Modeling and Experimental Validation (ModVal 9) CAMPUS Sursee Switzerland April 2–4 2012. p. 86.

R. Toelke A. Evans J. Martynczuk S. Zimmermann M. Prestat L. J. Gauckler J. Power Sourcessubmitted2012.

L. I. Berger inCRC Handbook of Chemistry and Physics 88th Ed. (Ed. D. R. Lide) CRC Press/Taylor and Francis Boca Raton FL 2008 pp. 77.

10.1088/0022-3727/35/2/307

M. J. Madou Fundamentals of Microfabrication: The Science of Miniaturization 2nd Ed. CRC Press Boca Raton FL USA 2002.

10.1116/1.580239

10.1002/adfm.200700136

10.1063/1.1631056

10.1016/j.jeurceramsoc.2009.06.012

10.1007/s00339-008-4689-6

10.1002/adfm.201102648

10.1107/S0567739476001551

10.1557/JMR.2004.0350

10.1016/j.jallcom.2004.05.016

10.1063/1.3275868

10.1016/j.ssi.2010.09.001

10.1002/adfm.201100251

10.1016/j.ssi.2007.01.019