Research on Ice Crystal Growth Inside the Vitrified Vs55 with Magnetic Nanoparticles During Devitrification by Cryomicroscopy

Chemical Research in Chinese Universities - Tập 35 - Trang 542-548 - 2019
Ke Liu1, Yi Xu1, Hongmei Yu1
1Institute of Biothermal Science & Technology, University of Shanghai for Science and Technology, Shanghai, P. R. China

Tóm tắt

The effect of magnetic nanoparticles(mNPs) on the devitrification crystallization of typical vitrification solution Vs55 was systematically explored by differential scanning calorimetry(DSC) and cryomicroscope system. The results show that, (i) the mNPs coated by both carboxylic acid(CA) and polyethylene glycol(PEG) had little effect on the glass transition temperature(Tg) of Vs55, but had significant effect on the devitrification transition temperature(Td) and devitrification enthalpy $({H_{{T_{\rm{d}}}}})$ , (ii) in the range of the devitrification area(−85— −60 °C), the MNPs coated by CA can significantly accelerate the devitrification of Vs55 as the isothermal temperatures and the cooling rates increased, and the ice growth rate was 0.37 μm/s at the isothermal temperature of −85 °C, and was about 2.19 μm/s at −75 °C. Also, the ice growth rates rose from 1.72 μm/s to 3.54 μm/s when the cooling rates were increased from 2 °C/min to 100 °C/min(at the isothermal temperature of −75 °C), (iii) magnetic nanoparticles coated by both PEG and CA could promote the devitrification of Vs55, for instance, without any crystal growth inside Vs55 at the isothermal temperature of −80 °C, but 1.04 and 2.31 μm/s for adding magnetic nanoparticles coated by CA and PEG, respectively. Compared with the samples coated by CA, PEG promoted the devitrification of Vs55 in a much more positive way, and the ice growth rates were 0.62 and 6.25 μm/s at the isothermal temperatures of −85 and −75 °C, respectively. These results indicate that the surface coating of MNPs could significantly affect the recrystallization of Vs55, and further work should be conducted in the future research.

Tài liệu tham khảo

Hua Z. Z., Ren H. S., Cryobiomedical Technology, Science Press, Beijing, 1994, 15

Baicu S., Taylor M. J., Chen Z., Rabin Y., Cell Preservation Technology, 2006, 4(4), 236

Fahy G. M., MacFarlane D. R., Angell C. A., Cryobiology, 1984, 21(4), 407

Anger J. T., Gilbert B. R., Goldstein M., Journal of Urology, 2003, 170(4), 1079

Potdar N., Gelbaya T. A., Nardo L. G., Reproductive BioMedicine Online, 2014, 29(2), 159

Arnaud F. G., Khirabadi B. S., Fahy G. M., Transplant International, 2002, 15(6), 278

Xu Y., Sun H. J., Lv Y., Zou J. C., Lin B. L., Hua T. C., CryoLetters, 2013, 34(4), 313

Lu X. L., Yu J., Zhang G., Wei Z. T., Li J. T., Zhang J. M., Cryobiology, 2014, 69(1), 79

Song Y. C., Khirabadi B. S., Lightfoot F., Brockbank K. G., Taylor M. J., Nature Biotechnology, 2000, 18(3), 296

Pegg D. E., Wusteman M. C., Boylan S., Cryobiology, 1997, 34(2), 183

Wusteman M., Robinson M., Pegg D., Cryobiology, 2004, 48(2), 179

Han X., Gao D. Y., Luo D., Yu C., Lu C. C., Microwave & Optical Technology Letters, 2005, 46(3), 201

Evans S., Cryobiology, 2000, 40(2), 126

Luo D., Yu C., He L., Lu C., Gao D., Cryobiology, 2006, 53(2), 288

Hodge I. M., Non-cryst Solids, 1994, 169(3), 211

Hu T. J., Gao C., Zhou G. Y., Journal of University of Shanghai for Science and Technology, 2005, 27(5), 381

Boutron P., Mehl P., Cryobiology, 1990, 27(4), 359

Boutron P., Delage D., Roustit B., Körber C., Cryobiology, 1982, 19(5), 550

Wang T., Zhao G., Liang X. M., Xu Y. P., Cryobiology, 2014, 68(2), 234

Etheridge M. L., Xu Y., Rott L., Choi J. H., Glasmacher B., Bischof J. C., Technology, 2014, 2(3), 229

Manuchehrabadi N., Gao Z., Zhang J., Ring H. L., Shao Q., Liu F., Science Translational Medicine, 2017, 9(379), eaah4586

Liu X., Zhao G., Chen Z., Panhwar F., He X. M., ACS Applied Materials & Interfaces, 2018, 10(19), 16822

Etheridge M. L., Xu Y., Rott L., Choi J., Glasmacher B., Bischof J. C., Technology, 2014, 2(3), 229

Xu Y., Yu H., Niu Y., Luo S., Cheng X., CryoLetters, 2016, 37(6), 448

Fahy G. M., Wowk B., Wu J., Phan J., Rasch C., Chang A., Cryobiology, 2004, 48(2), 157

Lv F. K., Liu B. L., Li W. J., Jaganathan G. K., Chinese Journal of Low Temperature Physics, 2012, 34(4), 315

Moscoso L. O., Socolovsky L. M., Gonzalez J. S., Muraca D., Hoppe C. E., Alvarez V. A., López Q. A., European Polymer Journal, 2013, 49(2), 279

MacFarlane D. R., Forsyth M., Cryobiology, 1990, 27(4), 345

Fahy G. M., Levy D. I., Ali S. E., Cryobiology, 1987, 24(3), 196

Hopkins J. B., Badeau R., Warkentin M., Thorne R. E., Cryobiology, 2012, 65(3), 169

Baicu S., Taylor M. J., Chen Z., Rabin Y., Cell Preservation Technology, 2006, 4(4), 236

Codorniuhernández E., Kusalik P. G., Physical Chemistry Chemical Physics, 2012. 14(33), 11639

Matsumoto K., Tsubaki D., Sekine K., Kubota H., Minamiya K., Yamanaka S., International Journal of Refrigeration, 2017, 75(Complete), 322

Geng H., Liu X., Shi G., Bai G., Ma J., Chen J., Angew Chem. Int. Ed. Engl., 2017, 56(4), 997