Reproducing Pairs of Measurable Functions
Tóm tắt
We analyze the notion of reproducing pair of weakly measurable functions, which generalizes that of continuous frame. We show, in particular, that each reproducing pair generates two Hilbert spaces, conjugate dual to each other. Several examples, both discrete and continuous, are presented.
Tài liệu tham khảo
Ali, S.T., Antoine, J-P., Gazeau, J-P.: Square integrability of group representations on homogeneous spaces, I: reproducing triples and frames. Ann. Inst. Henri Poincaré 55, 829–856 (1991)
Ali, S.T., Antoine, J-P., Gazeau, J-P.: Continuous frames in Hilbert space. Ann. Phys. 222, 1–37 (1993)
Ali, S.T., Antoine, J-P., Gazeau, J-P.: Coherent States, Wavelets and Their Generalizations, 2nd edn. Springer, New York (2014)
Antoine, J-P., Vandergheynst, P.: Wavelets on the 2-sphere: a group theoretical approach. Appl. Comput. Harmon. Anal. 7, 262–291 (1999)
Antoine, J-P., Trapani, C.: Partial Inner Product Spaces: Theory and Applications. Lecture Notes in Mathematics, vol. 1986. Springer, Berlin (2009)
Antoine, J-P., Balazs, P.: Frames and semi-frames. J. Phys. A, Math. Theor. 44, 205201 (2011), Corrigendum: J. Phys. A, Math. Theor. 44, 479501 (2011)
Antoine, J-P., Balazs, P.: Frames, semi-frames, and Hilbert scales. Numer. Funct. Anal. Optim. 33, 736–769 (2012)
Antoine, J-P., Trapani, C.: Reproducing pairs of measurable functions and partial inner product spaces. Adv. Oper. Theory (2017, in press)
Arefijamaal, A.A., Kamyabi Gol, R.A., Raisi Tousi, R., Tavallaei, N.: A new approach to continuous Riesz bases. J. Sci., Islamic Rep. Iran 24, 63–69 (2013)
Askari-Hemmat, A., Dehghan, M.A., Radjabalipour, M.: Generalized frames and their redundancy. Proc. Am. Math. Soc. 129, 1143–1147 (2000)
Bastiaans, M.J.: Gabor’s expansion of a signal into Gaussian elementary signals. Proc. IEEE 68, 538–539 (1980)
Bellomonte, G.: Bessel sequences, Riesz-like bases and operators in triplets of Hilbert spaces, preprint U. Palermo (2015)
Bellomonte, G., Trapani, C.: Riesz-like bases in rigged Hilbert spaces. Z. Anal. Anwend. 35, 243–265 (2016)
Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)
Gabardo, J-P., Han, D.: Frames associated with measurable spaces. Adv. Comput. Math. 18, 127–147 (2003)
Gabor, D.: Theory of communication, part 1: the analysis of information. J. Inst. Electr. Eng., 3 93, 429–441 (1946)
Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)
Hosseini Giv, H., Radjabalipour, M.: On the structure and properties of lower bounded analytic frames. Iran. J. Sci. Technol. 37A3, 227–230 (2013)
Janssen, A.J.E.M.: Gabor representation of generalized functions. J. Math. Anal. Appl. 83, 377–394 (1991)
Kaiser, G.: A Friendly Guide to Wavelets. Birkhäuser, Boston (1994)
Rahimi, A., Najati, A., Dehghan, Y.N.: Continuous frames in Hilbert spaces. Methods Funct. Anal. Topol. 12, 170–182 (2006)
Speckbacher, M., Balazs, P.: Reproducing pairs and the continuous nonstationary Gabor transform on LCA groups. J. Phys. A, Math. Theor. 48, 395201 (2015)
Speckbacher, M., Balazs, P.: Reproducing pairs and Gabor systems at critical density, arXiv:1610.06697 (2016)
Wiaux, Y., Jacques, L., Vandergheynst, P.: Correspondence principle between spherical and Euclidean wavelets. Astrophys. J. 632, 15–28 (2005)