Representations of Knot Groups and Twisted Alexander Polynomials

Springer Science and Business Media LLC - Tập 17 Số 3 - Trang 361-380 - 2001
Xiao Song Lin1
1Department of Mathematics, University of California, Riverside, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

P. Freyd, D. Yetter, J. Jost, W. Lickorish, K. Millet, A. Ocneanu, A new polynomial invariant of knots and links, Bull. A. M. S., 1985, 12:183–312

S. Cappell, R. Lee, E. Miller, A symplectic geometry approach to generalized Casson’s invariants of 3- manifold, Bull. A. M. S., 1990, 22:269–275

M. Wada, Twisted Alexander polynomial for finitely presentable groups, Topology, 1994, 33:241–256

B. Jiang, S Wang, Twisted topological invariants associated with representations, Topics in knot theory (ed. M. E. Bozhüyük), NATO Adv. Sci. Inst. Series C:Math. and Phys. Sciences, 399, Kluwer Academic Publishers Group, Dordrecht, 1993, 211–227

T. Kitano, Twisted Alexander polynomial and Reidemeister torsion, Pacific J. Math., 1996, 174:431–442

P. Kirk, C. Livingston, Twisted Alexander invariants, Reidemeister torsion, and Casson-Gordon invariants, Topology, 1999, 38:635–661

P. Kirk, C. Livingston, Twisted knot polynomials:inversion, mutation and concordance, Topology, 1999, 38:663–671

C. McA. Gordon, Some aspects of classical knot theory, Lecture Notes in Math., 685:1–60

K. Reidemeister, Knotentheorie, New York:Chelsea Publ. Co., 1948

D. Rolfsen, Knots and links, Math. Lecture Series, Publish or Perish, 1976, 7

R. H. Fox, A quick trip through knot theory, Topology of manifolds, Prentice Hall, 1960, 120–167