Replicating portfolio approach to capital calculation

Finance and Stochastics - Tập 22 - Trang 181-203 - 2017
Mathieu Cambou1, Damir Filipović2
1EPFL, Institute of Mathematics, Lausanne, Switzerland
2EPFL, Swiss Finance Institute, Lausanne, Switzerland

Tóm tắt

The replicating portfolio (RP) approach to the calculation of capital for life insurance portfolios is an industry standard. The RP is obtained from projecting the terminal loss of discounted asset–liability cash flows on a set of factors generated by a family of financial instruments that can be efficiently simulated. We provide the mathematical foundations and a novel dynamic and path-dependent RP approach for real-world and risk-neutral sampling. We show that our RP approach yields asymptotically consistent capital estimators if the chaotic representation property holds. We illustrate the tractability of the RP approach by three numerical examples.

Tài liệu tham khảo

Acerbi, C., Tasche, D.: On the coherence of expected shortfall. J. Bank. Finance 26, 1487–1503 (2002) Bauer, D., Bergmann, D., Kiesel, R.: On the risk-neutral valuation of life insurance contracts with numerical methods in view. ASTIN Bull. 40, 65–95 (2010) Beutner, E., Pelsser, A., Schweizer, J.: Fast convergence of regress-later estimates in least squares Monte Carlo. Preprint (2013). Available online at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2328709 Beutner, E., Pelsser, A., Schweizer, J.: Theory and validation of replicating portfolios in insurance risk management. Preprint (2016). https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2557368 Broadie, M., Du, Y., Moallemi, C.C.: Risk estimation via regression. Oper. Res. 63, 1077–1097 (2015) Cambou, M., Filipović, D.: Model uncertainty and scenario aggregation. Math. Finance 27, 534–567 (2017) CEIOPS: QIS5 Technical Specifications. Technical report, Committee of European Insurance and Occupational Pensions Supervisors (2010). Available online at http://eiopa.europa.eu/Publications/QIS/QIS5-technical_specifications_20100706.pdf Cont, R., Deguest, R., Scandolo, G.: Robustness and sensitivity analysis of risk measurement procedures. Quant. Finance 10, 593–606 (2010) DAV: Proxy-Modelle für die Risikokapitalberechnung. Technical report, Ausschuss Investment der Deutschen Aktuarvereinigung (DAV) (2015). Available online at https://aktuar.de/unsere-themen/fachgrundsaetze-oeffentlich/2015-07-08_DAV_Ergebnisbericht%20AG%20Aggregation.pdf Émery, M.: A discrete approach to the chaotic representation property. In: Azéma, J., et al. (eds.) Séminaire de Probabilités, XXXV. Lecture Notes in Math., vol. 1755, pp. 123–138. Springer, Berlin (2001) Émery, M.: Chaotic representation property of certain Azéma martingales. Ill. J. Math. 50(1–4), 395–411 (2006) Filipović, D.: Towards a capital model. Lecture Notes. Lecture Notes from the Institute of Actuaries of Belgium (IA|BE) Chair (2016). Available online at https://sfi.epfl.ch/files/content/sites/sfi/files/users/196224/public/brussels_20161201.pdf Filipović, D., Larsson, M.: Polynomial diffusions and applications in finance. Finance Stoch. 20, 931–972 (2016) Föllmer, H., Schied, A.: Stochastic Finance: An Introduction in Discrete Time, 3rd edn. de Gruyter, Berlin (2011) FOPI: Technical Document on the Swiss Solvency Test. Technical report, Swiss Federal Office of Private Insurance (2006). Available online at https://www.finma.ch/FinmaArchiv/bpv/download/e/SST_techDok_061002_E_wo_Li_20070118.pdf Glasserman, P.: Monte Carlo Methods in Financial Engineering. Applications of Mathematics (New York), vol. 53. Springer, New York (2004) Gordy, M.B., Juneja, S.: Nested simulation in portfolio risk measurement. Manag. Sci. 56, 1833–1848 (2010) Kaina, M., Rüschendorf, L.: On convex risk measures on \(L^{p}\)-spaces. Math. Methods Oper. Res. 69, 475–495 (2009) Krätschmer, V., Schied, A., Zähle, H.: Comparative and qualitative robustness for law-invariant risk measures. Finance Stoch. 18, 271–295 (2014) Lacoste, V.: Wiener chaos: a new approach to option hedging. Math. Finance 6, 197–213 (1996) Natolski, J., Werner, R.: Mathematical analysis of different approaches for replicating portfolios. Eur. Actuar. J. 4, 411–435 (2014) Natolski, J., Werner, R.: Improving optimal terminal value replicating portfolios. In: Glau, K., et al. (eds.) Innovations in Quantitative Risk Management: TU München, September 2013, pp. 289–301. Springer, Cham (2015) Natolski, J., Werner, R.: Mathematical foundation of the replicating portfolio approach. Preprint (2016). Available online at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2771254 Nualart, D.: The Malliavin Calculus and Related Topics. Probability and Its Applications (New York). Springer, New York (1995) Oechslin, J., Aubry, O., Aellig, M., Käppeli, A., Brönnimann, D., Tandonnet, A., Valois, G.: Replicating embedded options. Life Pensions Risk, February, 47–52 (2007) Pelsser, A., Schweizer, J.: The difference between LSMC and replicating portfolio in insurance liability modeling. Eur. Actuar. J. 6, 441–494 (2016) van Zwet, W.R.: A strong law for linear functions of order statistics. Ann. Probab. 8, 986–990 (1980)