Renormalization of gauge theories in the background-field approach

Journal of High Energy Physics - Tập 2018 - Trang 1-42 - 2018
Andrei O. Barvinsky1, Diego Blas2, Mario Herrero-Valea3, Sergey M. Sibiryakov2,3,4, Christian F. Steinwachs5
1Theory Department, Lebedev Physics Institute, Moscow, Russia
2Theoretical Physics Department, CERN, Geneva 23, Switzerland
3LPPC, Institute of Physics, EPFL, Lausanne, Switzerland
4Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
5Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany

Tóm tắt

Using the background-field method we demonstrate the Becchi-Rouet-Stora-Tyutin (BRST) structure of counterterms in a broad class of gauge theories. Put simply, we show that gauge invariance is preserved by renormalization in local gauge field theories whenever they admit a sensible background-field formulation and anomaly-free path integral measure. This class encompasses Yang-Mills theories (with possibly Abelian subgroups) and relativistic gravity, including both renormalizable and non-renormalizable (effective) theories. Our results also hold for non-relativistic models such as Yang-Mills theories with anisotropic scaling or Hořava gravity. They strengthen and generalize the existing results in the literature concerning the renormalization of gauge systems. Locality of the BRST construction is emphasized throughout the derivation. We illustrate our general approach with several explicit examples.

Tài liệu tham khảo

C. Becchi, A. Rouet and R. Stora, Renormalization of the Abelian Higgs-Kibble Model, Commun. Math. Phys. 42 (1975) 127 [INSPIRE]. C. Becchi, A. Rouet and R. Stora, Renormalization of Gauge Theories, Annals Phys. 98 (1976) 287 [INSPIRE]. I.V. Tyutin, Gauge Invariance in Field Theory and Statistical Physics in Operator Formalism (in Russian), Lebedev Institute preprint N39 (1975). S. Weinberg, The Quantum Theory of Fields. Vol. 2: Modern Applications, Cambridge University Press, Cambridge U.K. (1996). K.S. Stelle, Renormalization of Higher Derivative Quantum Gravity, Phys. Rev. D 16 (1977) 953 [INSPIRE]. J. Zinn-Justin, Renormalization of gauge theories, in: Lecture Notes in Physics. Vol. 37: Trends in Elementary Particle Theory, H. Rollnik and K. Dietz eds., Springer, Heidelberg Germany (1975). B.L. Voronov and I.V. Tyutin, Formulation of gauge theories of general form. I, Theor. Math. Phys. 50 (1982) 218 [Teor. Mat. Fiz. 50 (1982) 333] [INSPIRE]. B.l. Voronov and I.v. Tyutin, Formulation of gauge theories of general form. II. Gauge invariant renormalizability and renormalization structure, Theor. Math. Phys. 52 (1982) 628 [Teor. Mat. Fiz. 52 (1982) 14] [INSPIRE]. D. Anselmi, Removal of divergences with the Batalin-Vilkovisky formalism, Class. Quant. Grav. 11 (1994) 2181 [INSPIRE]. J. Gomis and S. Weinberg, Are nonrenormalizable gauge theories renormalizable?, Nucl. Phys. B 469 (1996) 473 [hep-th/9510087] [INSPIRE]. G. Barnich and M. Henneaux, Renormalization of gauge invariant operators and anomalies in Yang-Mills theory, Phys. Rev. Lett. 72 (1994) 1588 [hep-th/9312206] [INSPIRE]. G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology in the antifield formalism. II. Application to Yang-Mills theory, Commun. Math. Phys. 174 (1995) 93 [hep-th/9405194] [INSPIRE]. G. Barnich, F. Brandt and M. Henneaux, Local BRST cohomology in Einstein Yang-Mills theory, Nucl. Phys. B 455 (1995) 357 [hep-th/9505173] [INSPIRE]. O. Vafek, Z. Tesanovic and M. Franz, Relativity restored: Dirac anisotropy in QED(3), Phys. Rev. Lett. 89 (2002) 157003 [cond-mat/0203047] [INSPIRE]. M. Franz, Z. Tesanovic and O. Vafek, QED(3) theory of pairing pseudogap in cuprates. 1. From D wave superconductor to antiferromagnet via ’algebraic’ Fermi liquid, Phys. Rev. B 66 (2002) 054535 [cond-mat/0203333] [INSPIRE]. E. Ardonne, P. Fendley and E. Fradkin, Topological order and conformal quantum critical points, Annals Phys. 310 (2004) 493 [cond-mat/0311466] [INSPIRE]. B. Roy, V. Juricic and I.F. Herbut, Emergent Lorentz symmetry near fermionic quantum critical points in two and three dimensions, JHEP 04 (2016) 018 [arXiv:1510.07650] [INSPIRE]. S. Kachru, X. Liu and M. Mulligan, Gravity duals of Lifshitz-like fixed points, Phys. Rev. D 78 (2008) 106005 [arXiv:0808.1725] [INSPIRE]. T. Griffin, P. Hořava and C.M. Melby-Thompson, Conformal Lifshitz Gravity from Holography, JHEP 05 (2012) 010 [arXiv:1112.5660] [INSPIRE]. D. Anselmi, Weighted power counting, neutrino masses and Lorentz violating extensions of the Standard Model, Phys. Rev. D 79 (2009) 025017 [arXiv:0808.3475] [INSPIRE]. D. Anselmi, Standard Model Without Elementary Scalars And High Energy Lorentz Violation, Eur. Phys. J. C 65 (2010) 523 [arXiv:0904.1849] [INSPIRE]. R. Iengo and M. Serone, A Simple UV-Completion of QED in 5D, Phys. Rev. D 81 (2010) 125005 [arXiv:1003.4430] [INSPIRE]. A.O. Barvinsky et al., Heat kernel methods for Lifshitz theories, JHEP 06 (2017) 063 [arXiv:1703.04747] [INSPIRE]. P. Hořava, Membranes at Quantum Criticality, JHEP 03 (2009) 020 [arXiv:0812.4287] [INSPIRE]. P. Hořava, Quantum Gravity at a Lifshitz Point, Phys. Rev. D 79 (2009) 084008 [arXiv:0901.3775] [INSPIRE]. A.O. Barvinsky, D. Blas, M. Herrero-Valea, S.M. Sibiryakov and C.F. Steinwachs, Renormalization of Hořava gravity, Phys. Rev. D 93 (2016) 064022 [arXiv:1512.02250] [INSPIRE]. B.S. DeWitt, Quantum Theory of Gravity. 2. The Manifestly Covariant Theory, Phys. Rev. 162 (1967) 1195 [INSPIRE]. B.S. DeWitt, Quantum Theory of Gravity. 3. Applications of the Covariant Theory, Phys. Rev. 162 (1967) 1239 [INSPIRE]. L.F. Abbott, Introduction to the Background Field Method, Acta Phys. Polon. B 13 (1982) 33 [INSPIRE]. B.S. DeWitt, Dynamical Theory of Groups and Fields, Gordon and Breach, Philadelphia U.S.A. (1965). M.J.G. Veltman, Quantum Theory of Gravitation, Conf. Proc. C 7507281 (1975) 265 [INSPIRE]. J. Honerkamp, The Question of invariant renormalizability of the massless Yang-Mills theory in a manifest covariant approach, Nucl. Phys. B 48 (1972) 269 [INSPIRE]. G. ’t Hooft, An algorithm for the poles at dimension four in the dimensional regularization procedure, Nucl. Phys. B 62 (1973) 444 [INSPIRE]. G. ’t Hooft and M.J.G. Veltman, One loop divergencies in the theory of gravitation, Ann. Inst. H. Poincare Phys. Theor. A 20 (1974) 69. H. Kluberg-Stern and J.B. Zuber, Renormalization of Nonabelian Gauge Theories in a Background Field Gauge. 1. Green Functions, Phys. Rev. D 12 (1975) 482 [INSPIRE]. I.V. Tyutin, Renormalization of the Background Functional in Nonabelian Gauge Theories, Teor. Mat. Fiz. 35 (1978) 29 [INSPIRE]. P.A. Grassi, Stability and renormalization of Yang-Mills theory with background field method: A Regularization independent proof, Nucl. Phys. B 462 (1996) 524 [hep-th/9505101] [INSPIRE]. R. Ferrari, M. Picariello and A. Quadri, Algebraic aspects of the background field method, Annals Phys. 294 (2001) 165 [hep-th/0012090] [INSPIRE]. D. Binosi and A. Quadri, Slavnov-Taylor constraints for non-trivial backgrounds, Phys. Rev. D 84 (2011) 065017 [arXiv:1106.3240] [INSPIRE]. R.E. Kallosh, The Renormalization in Nonabelian Gauge Theories, Nucl. Phys. B 78 (1974) 293 [INSPIRE]. I. Ya. Arefeva, L.D. Faddeev and A.A. Slavnov, Generating Functional for the s Matrix in Gauge Theories, Theor. Math. Phys. 21 (1975) 1165 [Teor. Mat. Fiz. 21 (1974) 311] [INSPIRE]. L.F. Abbott, The Background Field Method Beyond One Loop, Nucl. Phys. B 185 (1981) 189 [INSPIRE]. S. Ichinose and M. Omote, Renormalization Using the Background Field Method, Nucl. Phys. B 203 (1982) 221 [INSPIRE]. A.O. Barvinsky and G.A. Vilkovisky, The effective action in quantum field theory: two-loop approximation, in Quantum Field Theory and Quantum Statistics. Vol. 1, I. Batalin, C.J. Isham and G.A. Vilkovisky eds., Hilger, Bristol U.K. (1987), pg. 245. D. Anselmi, Background field method, Batalin-Vilkovisky formalism and parametric completeness of renormalization, Phys. Rev. D 89 (2014) 045004 [arXiv:1311.2704] [INSPIRE]. D. Binosi and A. Quadri, Canonical Transformations and Renormalization Group Invariance in the presence of Non-trivial Backgrounds, Phys. Rev. D 85 (2012) 085020 [arXiv:1201.1807] [INSPIRE]. D. Binosi and A. Quadri, The Background Field Method as a Canonical Transformation, Phys. Rev. D 85 (2012) 121702 [arXiv:1203.6637] [INSPIRE]. I.A. Batalin and G.A. Vilkovisky, Gauge Algebra and Quantization, Phys. Lett. B 102 (1981) 27. I.A. Batalin and G.A. Vilkovisky, Feynman Rules For Reducible Gauge Theories, Phys. Lett. B 120 (1983) 166. I.A. Batalin and G.A. Vilkovisky, Quantization of Gauge Theories with Linearly Dependent Generators, Phys. Rev. D 28 (1983) 2567 [Erratum ibid. D 30 (1984) 508] [INSPIRE]. I.A. Batalin and G.A. Vilkovisky, Existence Theorem for Gauge Algebra, J. Math. Phys. 26 (1985) 172 [INSPIRE]. D. Anselmi, Weighted power counting and Lorentz violating gauge theories. I. General properties, Annals Phys. 324 (2009) 874 [arXiv:0808.3470] [INSPIRE]. D. Anselmi, Weighted power counting and Lorentz violating gauge theories. II. Classification, Annals Phys. 324 (2009) 1058 [arXiv:0808.3474] [INSPIRE]. P. Hořava, Quantum Criticality and Yang-Mills Gauge Theory, Phys. Lett. B 694 (2011) 172 [arXiv:0811.2217] [INSPIRE]. J. Wess and J. Bagger, Supersymmetry and Supergravity, Princeton University Press, Princeton U.S.A. (1983). M. Henneaux, Space-time Locality of the BRST Formalism, Commun. Math. Phys. 140 (1991) 1 [INSPIRE]. J.C. Collins, Renormalization, Cambridge University Press, Cambridge U.K. (1984). D. Anselmi and M. Halat, Renormalization of Lorentz violating theories, Phys. Rev. D 76 (2007) 125011 [arXiv:0707.2480] [INSPIRE]. K.S. Stelle, Classical Gravity with Higher Derivatives, Gen. Rel. Grav. 9 (1978) 353 [INSPIRE]. S. Vandoren and A. Van Proeyen, Simplifications in Lagrangian BV quantization exemplified by the anomalies of chiral W(3) gravity, Nucl. Phys. B 411 (1994) 257 [hep-th/9306147 [INSPIRE]. A.M. Polyakov, Gauge Fields and Strings, Harwood Academic Publishers, Reading U.K. (1987).