Renin Angiotensin System, COVID-19 and Male Fertility: Any Risk for Conceiving?
Tóm tắt
Từ khóa
Tài liệu tham khảo
Zhao, 2020, Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCoV) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak, Int. J. Infect. Dis., 92, 214, 10.1016/j.ijid.2020.01.050
WHO World Health Organization (2020, August 26). Coronavirus Disease (COVID-19) Dashboard. Available online: https://covid19.who.int.
Coleman, 2014, Coronaviruses: Important Emerging Human Pathogens, J. Virol., 88, 5209, 10.1128/JVI.03488-13
Mathewson, 2008, Interaction of severe acute respiratory syndrome-coronavirus and NL63 coronavirus spike proteins with angiotensin converting enzyme-2, J. Gen. Virol., 89, 2741, 10.1099/vir.0.2008/003962-0
Hoffmann, 2020, SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell, 181, 1, 10.1016/j.cell.2020.02.052
Pascolo, 2020, TMPRSS2 and ACE2 Coexpression in SARS-CoV-2 Salivary Glands Infection, J. Dent. Res., 99, 1120, 10.1177/0022034520933589
Ou, 2020, Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV, Nat. Commun., 11, 1, 10.1038/s41467-020-15562-9
Hoffmann, 2020, A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells, Mol. Cell, 78, 779, 10.1016/j.molcel.2020.04.022
Zupin, L., Pascolo, L., and Crovella, S. (2020). Is FURIN gene expression in salivary glands related to SARS-CoV-2 infectivity through saliva?. J. Clin. Pathol.
Hoffmann, M., Kleine-Weber, H., Krüger, N., Müller, M., Drosten, C., and Pöhlmann, S. (2020). The novel coronavirus 2019 (2019-nCoV) uses the SARS-coronavirus receptor ACE2 and the cellular protease TMPRSS2 for entry into target cells. BioRxiv.
Roche, 2020, A hypothesized role for dysregulated bradykinin signaling in COVID-19 respiratory complications, FASEB J., 34, 7265, 10.1096/fj.202000967
Kai, H., and Kai, M. (2020). Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors—lessons from available evidence and insights into COVID-19. Hypertens. Res.
Cai, Q., Huang, D., Yu, H., Zhu, Z., Xia, Z., Su, Y., Li, Z., Zhou, G., Gou, J., and Qu, J. (2020). COVID-19: Abnormal liver function tests. J. Hepatol.
Durvasula, R., Wellington, T., McNamara, E., and Watnick, S. (2020). COVID-19 and Kidney Failure in the Acute Care Setting: Our Experience From Seattle. Am. J. Kidney Dis.
Long, B., Brady, W.J., Koyfman, A., and Gottlieb, M. (2020). Cardiovascular complications in COVID-19. Am. J. Emerg. Med.
Monteiro, 2020, Pulmonary and systemic involvement in COVID-19 patients assessed with ultrasound-guided minimally invasive autopsy, Histopathology, 77, 186, 10.1111/his.14160
Dolhnikoff, 2020, Pathological evidence of pulmonary thrombotic phenomena in severe COVID-19, J. Thromb. Haemost., 18, 1517, 10.1111/jth.14844
Bushmaker, 2020, Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1, N. Engl. J. Med., 382, 1564, 10.1056/NEJMc2004973
Wang, 2020, Detection of SARS-CoV-2 in Different Types of Clinical Specimens, JAMA, 323, 1843
Oran, D.P., and Topol, E.J. (2020). Prevalence of Asymptomatic SARS-CoV-2 Infection: A Narrative Review. Ann. Intern. Med.
Ludvigsson, 2020, Systematic review of COVID-19 in children shows milder cases and a better prognosis than adults, Acta Paediatr., 109, 1088, 10.1111/apa.15270
Jin, J.-M., Bai, P., He, W., Wu, F., Liu, X.-F., Han, D.-M., Liu, S., and Yang, J.-K. (2020). Gender Differences in Patients With COVID-19: Focus on Severity and Mortality. Front. Public Health, 8.
Li, 2020, COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis, J. Med. Virol., 92, 577, 10.1002/jmv.25757
Yang, 2020, Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study, Lancet Respir. Med., 8, 475, 10.1016/S2213-2600(20)30079-5
Liu, 2010, Sex differences in renal angiotensin converting enzyme 2 (ACE2) activity are 17β-oestradiol-dependent and sex chromosome-independent, Biol. Sex Differ., 1, 6, 10.1186/2042-6410-1-6
Fan, 2017, Preliminary analysis of the association between methylation of the ACE2 promoter and essential hypertension, Mol. Med. Rep., 15, 3905, 10.3892/mmr.2017.6460
Carrel, 2005, X-inactivation profile reveals extensive variability in X-linked gene expression in females, Nature, 434, 400, 10.1038/nature03479
Lucas, 2014, The Androgen-Regulated Protease TMPRSS2 Activates a Proteolytic Cascade Involving Components of the Tumor Microenvironment and Promotes Prostate Cancer Metastasis, Cancer Discov., 4, 1310, 10.1158/2159-8290.CD-13-1010
Bukowska, 2017, Protective regulation of the ACE2/ACE gene expression by estrogen in human atrial tissue from elderly men, Exp. Biol. Med., 242, 1412, 10.1177/1535370217718808
Gagliardi, M.C., Tieri, P., Ortona, E., and Ruggieri, A. (2020). ACE2 expression and sex disparity in COVID-19. Cell Death Discov., 6.
Song, 2020, Expression of ACE2, the SARS-CoV-2 Receptor, and TMPRSS2 in Prostate Epithelial Cells, Eur. Urol., 78, 296, 10.1016/j.eururo.2020.04.065
Zupin, L., Pascolo, L., Zito, G., Ricci, G., and Crovella, S. (2020). SARS-CoV-2 and the next generations: Which impact on reproductive tissues?. J. Assist. Reprod. Genet.
Cao, Y., Li, L., Feng, Z., Wan, S., Huang, P., Sun, X., Wen, F., Huang, X., Ning, G., and Wang, W. (2020). Comparative genetic analysis of the novel coronavirus (2019-nCoV/SARS-CoV-2) receptor ACE2 in different populations. Cell Discov., 6.
Hussain, M., Jabeen, N., Raza, F., Shabbir, S., Baig, A.A., Amanullah, A., and Aziz, B. (2020). Structural variations in human ACE2 may influence its binding with SARS-CoV-2 spike protein. J. Med Virol.
Darbani, B. (2020). The Expression and Polymorphism of Entry Machinery for COVID-19 in Human: Juxtaposing Population Groups, Gender, and Different Tissues. Int. J. Environ. Res. Public Health, 17.
Asselta, 2020, ACE2 and TMPRSS2 variants and expression as candidates to sex and country differences in COVID-19 severity in Italy, Aging, 12, 10087, 10.18632/aging.103415
Lopera Maya, E.A., van der Graaf, A., Lanting, P., van der Geest, M., Fu, J., Swertz, M., Franke, L., Wijmenga, C., Deelen, P., and Zhernakova, A. (2020). Lack of Association Between Genetic Variants at ACE2 and TMPRSS2 Genes Involved in SARS-CoV-2 Infection and Human Quantitative Phenotypes. Front. Genet., 11.
Atlas, 2007, The Renin-Angiotensin Aldosterone System: Pathophysiological Role and Pharmacologic Inhibition, J. Manag. Care Pharm., 13, 9
Fountain, J.H., and Lappin, S.L. (2020). Physiology, Renin Angiotensin System. StatPearls, StatPearls Publishing.
Wolf, 2006, Renin-angiotensin-aldosterone system and progression of renal disease, J. Am. Soc. Nephrol., 17, 2985, 10.1681/ASN.2006040356
Esther, 1996, Mice lacking angiotensin-converting enzyme have low blood pressure, renal pathology, and reduced male fertility, Lab. Invest., 74, 953
Paul, 2006, Physiology of Local Renin-Angiotensin Systems, Physiological Reviews, 86, 747, 10.1152/physrev.00036.2005
Ramaraj, 1998, Selective restoration of male fertility in mice lacking angiotensin-converting enzymes by sperm-specific expression of the testicular isozyme, J. Clin. Investig., 102, 371, 10.1172/JCI3545
Ferrario, 2014, An evolving story of angiotensin-II-forming pathways in rodents and humans, Clin. Sci., 126, 461, 10.1042/CS20130400
Tolekova, A.N. (2017). Renin-Angiotensin System on Reproductive Biology. Renin-Angiotensin System-Past, Present and Future, InTech.
Pandey, 1984, Detection of renin mRNA in mouse testis by hybridization with renin cDNA probe, Biochem. Biophys. Res. Commun., 125, 662, 10.1016/0006-291X(84)90590-4
Deschepper, 1986, Analysis by immunocytochemistry and in situ hybridization of renin and its mRNA in kidney, testis, adrenal, and pituitary of the rat, Proc. Natl. Acad. Sci. USA, 83, 7552, 10.1073/pnas.83.19.7552
Pandey, 1986, Regulation of renin angiotensins by gonadotropic hormones in cultured murine Leydig tumor cells. Release of angiotensin but not renin, J. Biol. Chem., 261, 3934, 10.1016/S0021-9258(17)35604-1
Herr, D., Bekes, I., and Wulff, C. (2013). Local Renin-Angiotensin System in the Reproductive System. Front. Endorcrinol., 4.
Santos, 2013, Angiotensin-(1–7): Beyond the cardio-renal actions, Clin. Sci., 124, 443, 10.1042/CS20120461
Reis, 2010, Angiotensin (1-7) and its receptor Mas are expressed in the human testis: Implications for male infertility, J. Mol. Histol., 41, 75, 10.1007/s10735-010-9264-8
Pan, 2013, Angiotensin-Converting Enzymes Play a Dominant Role in Fertility, Int. J. Mol. Sci., 14, 21071, 10.3390/ijms141021071
Leung, P., and Sernia, C. (2003). The renin-angiotensin system and male reproduction: New functions for old hormones. J. Mol. Endocrinol., 263–270.
Vinson, 1996, Angiotensin II stimulates sperm motility, Regul. Pept., 67, 131, 10.1016/S0167-0115(96)00118-8
Pauls, 2003, Isoforms of angiotensin I-converting enzyme in the development and differentiation of human testis and epididymis, Andrologia, 35, 32, 10.1046/j.1439-0272.2003.00535.x
Sibony, 1993, Gene expression and tissue localization of the two isoforms of angiotensin I converting enzyme, Hypertension, 21, 827, 10.1161/01.HYP.21.6.827
Fan, C., Li, K., Ding, Y., Lu, W.L., and Wang, J. (2020). ACE2 Expression in Kidney and Testis May Cause Kidney and Testis Damage After 2019-nCoV Infection. MedRxiv.
Sabeur, 2000, Effects of angiotensin II on the acrosome reaction in equine spermatozoa, J. Reprod. Fertil., 120, 135, 10.1530/reprod/120.1.135
Dinh, 2001, Identification, distribution, and expression of angiotensin II receptors in the normal human prostate and benign prostatic hyperplasia, Endorcrinology, 142, 1349, 10.1210/endo.142.3.8020
Gianzo, 2016, Angiotensin II type 2 receptor is expressed in human sperm cells and is involved in sperm motility, Fertil. Steril., 105, 608, 10.1016/j.fertnstert.2015.11.004
Valdivia, 2020, Role of Angiotensin-(1-7) via MAS receptor in human sperm motility and acrosome reaction, Reproduction, 159, 241, 10.1530/REP-19-0274
Vaarala, 2001, Expression of transmembrane serine protease TMPRSS2 in mouse and human tissues, J. Pathol., 193, 134, 10.1002/1096-9896(2000)9999:9999<::AID-PATH743>3.0.CO;2-T
Lucas, 2008, The androgen-regulated type II serine protease TMPRSS2 is differentially expressed and mislocalized in prostate adenocarcinoma, J. Pathol., 215, 118, 10.1002/path.2330
Chen, 2010, TMPRSS2, a Serine Protease Expressed in the Prostate on the Apical Surface of Luminal Epithelial Cells and Released into Semen in Prostasomes, Is Misregulated in Prostate Cancer Cells, Am. J. Pathol., 176, 2986, 10.2353/ajpath.2010.090665
Wang, Z., and Xu, X. (2020). scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells. Cells, 9.
Leung, 2002, Androgen dependent expression of AT1 receptor and its regulation of anion secretion in rat epididymis, Cell Biol. Int., 26, 117, 10.1006/cbir.2001.0830
Hamming, 2007, The emerging role of ACE2 in physiology and disease, J. Pathol., 212, 1, 10.1002/path.2162
Hikmet, 2020, The protein expression profile of ACE2 in human tissues, Mol. Syst. Biol., 16, e9610, 10.15252/msb.20209610
Kuba, 2010, Trilogy of ACE2: A peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters, Pharmacol. Ther., 128, 119, 10.1016/j.pharmthera.2010.06.003
Li, 2020, Physiological and pathological regulation of ACE2, the SARS-CoV-2 receptor, Pharmacol. Res., 157, 104833, 10.1016/j.phrs.2020.104833
Zhang, J., Wu, Y., Wang, R., Lu, K., Tu, M., Guo, H., Xie, W., Qin, Z., Li, S., and Zhu, P. (2020). Bioinformatic Analysis Reveals That the Reproductive System is Potentially at Risk from SARS-CoV-2. Preprints.
Neves, 2006, Distribution of angiotensin-(1-7) and ACE2 in human placentas of normal and pathological pregnancies, Placenta, 27, 200, 10.1016/j.placenta.2005.02.015
Lavrentyev, 2009, High glucose-induced Nox1-derived superoxides downregulate PKC-betaII, which subsequently decreases ACE2 expression and ANG(1-7) formation in rat VSMCs, Am. J. Physiol. Heart Circ. Physiol., 296, H106, 10.1152/ajpheart.00239.2008
Derby, 2006, Body mass index, waist circumference and waist to hip ratio and change in sex steroid hormones: The Massachusetts Male Ageing Study, Clin. Endocrinol., 65, 125, 10.1111/j.1365-2265.2006.02560.x
Oakes, 2018, Nicotine and the renin-angiotensin system, Am. J. Physiol. Regul. Integr. Comp. Physiol., 315, R895, 10.1152/ajpregu.00099.2018
Dai, 2015, The hazardous effects of tobacco smoking on male fertility, Asian J. Androl., 17, 954, 10.4103/1008-682X.150847
Neukamm, 1998, Ultrastructural localization of angiotensin-converting enzyme in ejaculated human spermatozoa, Hum. Reprod., 13, 604, 10.1093/humrep/13.3.604
Ehlers, 1989, Angiotensin-converting enzyme: New concepts concerning its biological role, Biochemistry, 28, 5311, 10.1021/bi00439a001
Miska, 1990, Enhancement of sperm motility by bradykinin and kinin analogs, Arch. Androl., 25, 63, 10.3109/01485019008987595
Li, 2014, Human sperm devoid of germinal angiotensin-converting enzyme is responsible for total fertilization failure and lower fertilization rates by conventional in vitro fertilization, Biol. Reprod., 90, 125, 10.1095/biolreprod.113.114827
Tebbs, 1999, Angiotensin II is a growth factor in the peri-implantation rat embryo, J. Anat., 195, 75, 10.1046/j.1469-7580.1999.19510075.x
Gianzo, 2018, Human sperm testicular angiotensin-converting enzyme helps determine human embryo quality, Asian J. Androl., 20, 498, 10.4103/aja.aja_25_18
George, 2010, The renin-angiotensin system and cancer: Old dog, new tricks, Nat. Rev. Cancer, 10, 745, 10.1038/nrc2945
Volpe, 2003, Angiotensin II AT2 receptor subtype: An uprising frontier in cardiovascular disease?, J. Hypertens., 21, 1429, 10.1097/00004872-200308000-00001
Vinson, 1995, Type 1 angiotensin II receptors in rat and human sperm, J. Endocrinol., 144, 369, 10.1677/joe.0.1440369
Leung, 1997, Angiotensin II receptors: Localization of type I and type II in rat epididymides of different developmental stages, J. Membr. Biol., 157, 97, 10.1007/s002329900219
Gur, 1998, Angiotensin II induces acrosomal exocytosis in bovine spermatozoa, Am. J. Physiol., 275, E87
Wennemuth, 1999, Distribution and function of angiotensin II receptors in mouse spermatozoa, Andrologia, 31, 323
Magnan, 1979, Characterization of receptors for angiotensin in the rat vas deferens, Can. J. Physiol. Pharmacol., 57, 417, 10.1139/y79-063
Grove, 1989, Rat epididymis contains functional angiotensin II receptors, Endocrinology, 125, 223, 10.1210/endo-125-1-223
Kitami, 1992, Differential gene expression and regulation of type-1 angiotensin II receptor subtypes in the rat, Biochem. Biophys. Res. Commun., 188, 446, 10.1016/0006-291X(92)92405-M
Sum, 1995, Characterization of contractile response to angiotensin in epididymal rat vas deferens, Pharmacology, 51, 105, 10.1159/000139322
Leung, 1997, Angiotensin II receptors, AT1 and AT2 in the rat epididymis. Immunocytochemical and electrophysiological studies, Biochim. Biophys. Acta, 1357, 65, 10.1016/S0167-4889(97)00015-3
Leung, 1998, Differential gene expression of angiotensin II receptor subtypes in the epididymides of mature and immature rats, Life Sci., 62, 461, 10.1016/S0024-3205(97)01140-5
Young, 1986, Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains, Cell, 45, 711, 10.1016/0092-8674(86)90785-3
Santos, 2003, Angiotensin-(1-7) is an endogenous ligand for the G protein-coupled receptor Mas, Proc. Natl. Acad. Sci. USA, 100, 8258, 10.1073/pnas.1432869100
Santos, 2007, Angiotensin-(1-7) and the renin-angiotensin system, Curr. Opin. Nephrol. Hypertens., 16, 122, 10.1097/MNH.0b013e328031f362
Walther, 1998, Sustained long term potentiation and anxiety in mice lacking the Mas protooncogene, J. Biol. Chem., 273, 11867, 10.1074/jbc.273.19.11867
Leal, 2009, The role of angiotensin-(1-7) receptor Mas in spermatogenesis in mice and rats, J. Anat., 214, 736, 10.1111/j.1469-7580.2009.01058.x
Dworakowska, D., and Grossman, A.B. (2020). Renin-angiotensin system inhibitors in management of hypertension during the COVID-19 pandemic. J. Physiol. Pharmacol., 71.
Siems, 2003, Effects of kinins on mammalian spermatozoa and the impact of peptidolytic enzymes, Andrologia, 35, 44, 10.1046/j.1439-0272.2003.00536.x
Okeahialam, 2006, Effect of lisnopril, an angiotensin converting enzyme (ACE) inhibitor on spermatogenesis in rats, Arch. Androl., 52, 209, 10.1080/01485010500398012
Monsees, 1996, Characterization of kininases in testicular cells, Immunopharmacology, 32, 169, 10.1016/0162-3109(95)00084-4
Saha, 2000, Role of angiotensin-converting enzyme inhibitor, lisinopril, on spermatozoal functions in rats, Methods Find Exp. Clin. Pharmacol., 22, 159, 10.1358/mf.2000.22.3.796102
Matsuyama, 2020, Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells, Proc. Natl. Acad. Sci. USA, 117, 7001, 10.1073/pnas.2002589117
Antalis, T.M., Bugge, T.H., and Wu, Q. (2011). Membrane-Anchored Serine Proteases in Health and Dsease. Proteases in Health and Disease-Google Libri, Academic Press.
Choi, 2009, Type II transmembrane serine proteases in cancer and viral infections, Trends Mol. Med., 15, 303, 10.1016/j.molmed.2009.05.003
Freuer, 2010, Cleavage of Influenza Virus Hemagglutinin by Airway Proteases TMPRSS2 and HAT Differs in Subcellular Localization and Susceptibility to Protease Inhibitors, J. Virol., 84, 5605, 10.1128/JVI.00140-10
Matsuyama, 2010, Efficient Activation of the Severe Acute Respiratory Syndrome Coronavirus Spike Protein by the Transmembrane Protease TMPRSS2, J. Virol., 84, 12658, 10.1128/JVI.01542-10
Shulla, 2011, A Transmembrane Serine Protease Is Linked to the Severe Acute Respiratory Syndrome Coronavirus Receptor and Activates Virus Entry, J. Virol., 85, 873, 10.1128/JVI.02062-10
Simmons, 2013, Proteolytic activation of the SARS-coronavirus spike protein: Cutting enzymes at the cutting edge of antiviral research, Antivir. Res., 100, 605, 10.1016/j.antiviral.2013.09.028
Chen, 1997, Cloning of the TMPRSS2 Gene, Which Encodes a Novel Serine Protease with Transmembrane, LDLRA, and SRCR Domains and Maps to 21q22.3, Genomics, 44, 309, 10.1006/geno.1997.4845
Afar, 2001, Catalytic cleavage of the androgen-regulated TMPRSS2 protease results in its secretion by prostate and prostate cancer epithelia, Cancer Res., 61, 1686
Lizio, 2019, Update of the FANTOM web resource: Expansion to provide additional transcriptome atlases, Nucleic Acids Res., 47, D752, 10.1093/nar/gky1099
Lonsdale, 2013, The Genotype-Tissue Expression (GTEx) project, Nat. Genet., 45, 580, 10.1038/ng.2653
Donaldson, 2002, Regulation of the Epithelial Sodium Channel by Serine Proteases in Human Airways, J. Biol. Chem., 277, 8338, 10.1074/jbc.M105044200
Lin, 1999, Prostate-localized and androgen-regulated expression of the membrane-bound serine protease TMPRSS2, Cancer Res., 59, 4180
Kim, 2006, Phenotypic Analysis of Mice Lacking the Tmprss2-Encoded Protease, Mol. Cell. Biol., 26, 965, 10.1128/MCB.26.3.965-975.2006
Ko, 2015, Androgen-Induced TMPRSS2 Activates Matriptase and Promotes Extracellular Matrix Degradation, Prostate Cancer Cell Invasion, Tumor Growth, and Metastasis, Cancer Res., 75, 2949, 10.1158/0008-5472.CAN-14-3297
Zhao, 2003, Clinical pathology and pathogenesis of severe acute respiratory syndrome, Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi, 17, 217
Gu, 2005, Multiple organ infection and the pathogenesis of SARS, J. Exp. Med., 202, 415, 10.1084/jem.20050828
Ding, 2004, Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: Implications for pathogenesis and virus transmission pathways, J. Pathol., 203, 622, 10.1002/path.1560
Gu, 2007, Pathology and Pathogenesis of Severe Acute Respiratory Syndrome, Am. J. Pathol., 170, 1136, 10.2353/ajpath.2007.061088
Xu, 2006, Orchitis: A complication of severe acute respiratory syndrome (SARS), Biol. Reprod., 74, 410, 10.1095/biolreprod.105.044776
Naito, 2007, REVIEW ARTICLE: Patterns of Infiltration of Lymphocytes into the Testis Under Normal and Pathological Conditions in Mice: TESTICULAR INFILTRATION OF LYMPHOCYTES, Am. J. Reprod. Immunol., 59, 55, 10.1111/j.1600-0897.2007.00556.x
Jacobo, 2011, CD4+ and CD8+ T cells producing Th1 and Th17 cytokines are involved in the pathogenesis of autoimmune orchitis, Reproduction, 141, 249, 10.1530/REP-10-0362
Jung, 2007, Influence of genital heat stress on semen quality in humans, Andrologia, 39, 203, 10.1111/j.1439-0272.2007.00794.x
Yin, 2018, MERS, SARS and other coronaviruses as causes of pneumonia: MERS, SARS and coronaviruses, Respirology, 23, 130, 10.1111/resp.13196
Raj, 2013, Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC, Nature, 495, 251, 10.1038/nature12005
Guo, 2018, The adult human testis transcriptional cell atlas, Cell Res., 28, 1141, 10.1038/s41422-018-0099-2
Shen, 2020, The ACE2 Expression in Sertoli cells and Germ cells may cause male reproductive disorder after SARS-CoV-2 Infection, J. Cell. Mol. Med., 24, 9472, 10.1111/jcmm.15541
Stanley, K.E., Thomas, E., Leaver, M., and Wells, D. (2020). Coronavirus disease (COVID-19) and fertility: Viral host entry protein expression in male and female reproductive tissues. Fertil. Steril.
Paoli, D., Pallotti, F., Colangelo, S., Basilico, F., Mazzuti, L., Turriziani, O., Antonelli, G., Lenzi, A., and Lombardo, F. (2020). Study of SARS-CoV-2 in semen and urine samples of a volunteer with positive naso-pharyngeal swab. J. Endocrinol. Investig.
Song, C., Wang, Y., Li, W., Hu, B., Chen, G., Xia, P., Wang, W., Li, C., Diao, F., and Hu, Z. (2020). Absence of 2019 novel coronavirus in semen and testes of COVID-19 patients†. Biol. Reprod.
Kayaaslan, B., Korukluoglu, G., Hasanoglu, I., Kalem, A.K., Eser, F., Akinci, E., and Guner, R. (2020). Investigation of SARS-CoV-2 in Semen of Patients in the Acute Stage of COVID-19 Infection. Urol. Int., 1–6.
Pavone, C., Giammanco, G.M., Baiamonte, D., Pinelli, M., Bonura, C., Montalbano, M., Profeta, G., Curcurù, L., and Bonura, F. (2020). Italian males recovering from mild COVID-19 show no evidence of SARS-CoV-2 in semen despite prolonged nasopharyngeal swab positivity. Int. J. Impot. Res.
Guo, L., Zhao, S., Li, W., Wang, Y., Li, L., Jiang, S., Ren, W., Yuan, Q., Zhang, F., and Kong, F. (2020). Absence of SARS-CoV-2 in Semen of a COVID-19 Patient Cohort. Andrology.
Li, 2020, Clinical Characteristics and Results of Semen Tests Among Men With Coronavirus Disease 2019, JAMA Netw. Open, 3, e208292, 10.1001/jamanetworkopen.2020.8292
Pan, 2020, No evidence of severe acute respiratory syndrome-coronavirus 2 in semen of males recovering from coronavirus disease 2019, Fertil. Steril., 113, 1135, 10.1016/j.fertnstert.2020.04.024
Yang, 2020, Pathological Findings in the Testes of COVID-19 Patients: Clinical Implications, Eur. Urol. Focus, 6, 1124, 10.1016/j.euf.2020.05.009
La Marca, A., Busani, S., Donno, V., Guaraldi, G., Ligabue, G., and Girardis, M. (2020). Testicular pain as an unusual presentation of COVID-19: A brief review of SARS-CoV-2 and the testis. Reprod. BioMedicine Online.
Kim, 2020, Abdominal and testicular pain: An atypical presentation of COVID-19, Am. J. Emerg. Med., 38, 1542.e1, 10.1016/j.ajem.2020.03.052
Holtmann, 2020, Assessment of SARS-CoV-2 in human semen—a cohort study, Fertil. Steril., 114, 233, 10.1016/j.fertnstert.2020.05.028
Ma, L., Xie, W., Li, D., Shi, L., Ye, G., Mao, Y., Xiong, Y., Sun, H., Zheng, F., and Chen, Z. (2020). Evaluation of sex-related hormones and semen characteristics in reproductive-aged male COVID-19 patients. J. Med. Virol.
Loveland, K.L., Klein, B., Pueschl, D., Indumathy, S., Bergmann, M., Loveland, B.E., Hedger, M.P., and Schuppe, H.-C. (2017). Cytokines in Male Fertility and Reproductive Pathologies: Immunoregulation and Beyond. Front. Endorcrinol., 8.
Verma, 2020, ACE2 receptor expression in testes: Implications in coronavirus disease 2019 pathogenesis†, Biol. Reprod., 103, 449, 10.1093/biolre/ioaa080
Corona, 2020, SARS-CoV-2 infection, male fertility and sperm cryopreservation: A position statement of the Italian Society of Andrology and Sexual Medicine (SIAMS) (Società Italiana di Andrologia e Medicina della Sessualità), J. Endocrinol. Investig., 43, 1153, 10.1007/s40618-020-01290-w
Ding, 2003, The clinical pathology of severe acute respiratory syndrome (SARS): A report from China, J. Pathol., 200, 282, 10.1002/path.1440
Zhou, W., De Iuliis, G.N., Dun, M.D., and Nixon, B. (2018). Characteristics of the Epididymal Luminal Environment Responsible for Sperm Maturation and Storage. Front. Endorcrinol., 9.
(2020, May 20). ESHRE Coronavirus Covid-19: ESHRE statement on pregnancy and conception. Available online: https://www.eshre.eu/Press-Room/ESHRE-News.
(2020, May 20). ASRM Patient Management and Clinical Recommendations During The Coronavirus (COVID-19) Pandemic. Available online: https://www.asrm.org/news-and-publications/covid-19/statements/patient-management-and-clinical-recommendations-during-the-coronavirus-covid-19-pandemic/.
(2020, May 20). ESHRE ESHRE guidance on recommencing ART treatments. Available online: https://www.eshre.eu/Press-Room/ESHRE-News.
The ESHRE COVID-19 Working Group, Vermeulen, N., Ata, B., Gianaroli, L., Lundin, K., Mocanu, E., Rautakallio-Hokkanen, S., Tapanainen, J.S., and Veiga, A. (2020). A picture of medically assisted reproduction activities during the COVID-19 pandemic in Europe. Hum. Reprod. Open, 2020.
Vaiarelli, A., Bulletti, C., Cimadomo, D., Borini, A., Alviggi, C., Ajossa, S., Anserini, P., Gennarelli, G., Guido, M., and Levi-Setti, P.E. (2020). COVID-19 and ART: The view of the Italian Society of Fertility and Sterility and Reproductive Medicine. Reprod. BioMedicine Online.
Qiu, L., Liu, X., Xiao, M., Xie, J., Cao, W., Liu, Z., Morse, A., Xie, Y., Li, T., and Zhu, L. (2020). SARS-CoV-2 is not detectable in the vaginal fluid of women with severe COVID-19 infection. Clin. Infect. Dis.
(2020, May 20). SART SART Embryology Laboratory Suggestions For COVID-19. Available online: https://www.sart.org/professionals-and-providers/covid-19-resources/embryology-laboratory-suggestions-for-covid-19/.
Parmegiani, 2012, A reliable procedure for decontamination before thawing of human specimens cryostored in liquid nitrogen: Three washes with sterile liquid nitrogen (SLN2), Fertil. Steril., 98, 870, 10.1016/j.fertnstert.2012.06.028
Jindal, 2016, Guidelines for risk reduction when handling gametes from infectious patients seeking assisted reproductive technologies, Reprod. Biomed. Online, 33, 121, 10.1016/j.rbmo.2016.04.015
Aitken, R.J. (2020). COVID-19 and human spermatozoa—Potential risks for infertility and sexual transmission?. Andrology.