Remobilization in the Cratonic Lithosphere Recorded in Polycrystalline Diamond

American Association for the Advancement of Science (AAAS) - Tập 289 Số 5482 - Trang 1182-1185 - 2000
Dorrit E. Jacob1, Fanus Viljoen2, Nathalie Grassineau3, E. Jagoutz4
1Institut für Geologische Wissenschaften, Universität Greifswald, F.-L. Jahnstrasse 17a, D-17487 Greifswald, Germany.
2DeBeers Geoscience Center, Post Office Box 82232, Southdale 2135, South Africa.
3Department of Geology, Royal Holloway University of London, Egham, Surrey, TW20 0EX UK
4Max-Planck Institut für Chemie, Saarstrasse 23, D-55122 Mainz, Germany.

Tóm tắt

Polycrystalline diamonds (framesites) from the Venetia kimberlite in South Africa contain silicate minerals whose isotopic and trace element characteristics document remobilization of older carbon and silicate components to form the framesites shortly before kimberlite eruption. Chemical variations within the garnets correlate with carbon isotopes in the diamonds, indicating contemporaneous formation. Trace element, radiogenic, and stable isotope variations can be explained by the interaction of eclogites with a carbonatitic melt, derived by remobilization of material that had been stored for a considerable time in the lithosphere. These results indicate more recent formation of diamonds from older materials within the cratonic lithosphere.

Từ khóa


Tài liệu tham khảo

Janse A. J. A., Russ. Geol. Geophys. 33, 9 (1992).

S. H. Richardson et al. Nature 310 198 (1984).

Richardson S. H., et al., Nature 346, 54 (1990).

Shimizu N., Sobolev N. V., Nature 375, 394 (1995).

Simons F. J., et al., Lithos 48, 17 (1999).

Gurney J. J., Boyd F. R., Yearb. Carnegie Inst. 1982, 267 (1982);

. Framesites are defined as polycrystalline aggregates of diamond with crystals smaller than 1 mm.

O. Navon in P. Nixon Volume J. Gurney et al. Eds. (Red Roof Design Cape Town South Africa 1999) pp. 584–604.

Allsopp H. L., et al., S. Afr. J. Geol. 98, 239 (1995).

CaO contents in eclogitic garnets from framesites range between 2.70 and 8.18 wt % with an average of 4.73 wt % (24); those of garnets in eclogite xenoliths average 6.84 wt % ( n = 182) and range between 3.3 and 21.69 wt % (25 26).

Mg number = MgMg+Fe×100.

Deines P., et al., Geochim. Cosmochim. Acta 61, 3993 (1997);

. These authors report a negative correlation for δ 13 C and wt % FeO in olivines from southern African peridotitic diamond inclusions.

T. E. McCandless et al. paper presented at the 28th International Geological Congress Washington DC 1989.

Subcalcic garnets are harzburgitic (depleted) minerals with low CaO contents (<2 wt %) but high Cr 2 O 3 contents (up to 18 wt %) (27). Typically they have LREE-enriched trace element signatures and unradiogenic ε Nd(i) values down to −60 ε (28). Sm/Nd ratios are 0.02 to 0.80 (29).

All grains used for either isotope measurements or LAM were fresh and optically clear up to a magnification of 500 and were thoroughly acid leached after hand-picking (30) followed by optical rechecks. Inclusions of other minerals such as carbonate or apatite would also be evident from abrupt changes in the time-resolved signal for Ca and Si.

1 × 10 −18 cm/s 2 : R. Coghlan thesis Brown University Providence RI (1990).

Pollack H. N., Chapman D. S., Tectonophysics 38, 279 (1977).

Ionov D., et al., Earth Planet. Sci. Lett. 119, 283 (1993).

Yaxley G. M., Green D. H., Earth Planet. Sci. Lett. 128, 313 (1994).

10.1126/science.280.5368.1421

10.1126/science.285.5429.851

McCandless T., Gurney J. J., Russ. Geol. Geophys. 38, 394 (1997).

Jacob D., Foley S., Lithos 48, 317 (1999).

Jacob D., et al., Geochim. Cosmochim. Acta 58, 5191 (1994).

K. S. Viljoen unpublished data.

C. J. Hatton thesis University of Cape Town Cape Town South Africa (1978).

MacGregor I. D., Manton W. I., J. Geophys. Res. 91, 14063 (1986).

N. V. Sobolev Peep-Seated Inclusions in Kimberlites and the Problem of the Composition of the Upper Mantle (at the American Geophysical Union Washington DC 1977).

Pearson G. P., et al., Geochim. Cosmochim. Acta 59, 959 (1995).

Jacob D., et al., N. Jahrb. Miner. Abh. 172, 357 (1998).

D. Jacob and E. Jagoutz in Kimberlites Related Rocks and Mantle Xenoliths CPRM Special Publication 1/95 H. O. A. Meyer and O. H. Leonardos Eds. (Companhia de Pesquisa de Recursos Minerais Brasilia Brazil 1995) vol. 1 pp. 304–317.

Viljoen K. S., et al., Chem. Geol. 131, 235 (1996).

Mattey D., McPherson C., Chem. Geol. 105, 305 (1993).

P. Cartigny thesis Université Paris 7 (1997).

Snyder G. A., et al., J. Petrol. 38, 85 (1997).

C. B. Smith et al. in Kimberlites and Related Rocks J. Ross et al. Eds. Geol. Soc. Am. Spec. Publ. 14 853 (1989).

S.-S. Sun and W. F. McDonough in Magmatism in the Ocean Basins A. D. Saunders and M. J. Norry Eds. Geol. Soc. London Spec. Publ. 42 313 (1989).

Longerich H. P., et al., J. Anal. At. Spectrom. 11, 899 (1996);

. Trace element data are available at www.sciencemag.org/feature/data.1051804.shl.

This study was supported by Deutsche Forschungsgemeinschaft grants Ja 781/2-1 and Ja 781/2-2 to D.J. We thank D. Mattey for providing access to his efficient stable isotope lab and P. Cartigny for measuring the carbon isotopes. Framesite samples were provided by DeBeers. We thank three anonymous reviewers for constructive criticism.