Remarks on endpoints of multivalued mappings in geodesic spaces

Satit Saejung1
1Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand

Tóm tắt

AbstractWe discuss Panayanak’s results on the existence of an endpoint of a multivalued nonexpansive mapping. We show that all of his results can be extended and some can be established in a wider class of mappings. Out of his three open questions, two of them are solved in affirmative.

Từ khóa


Tài liệu tham khảo

Corley, HW: Some hybrid fixed point theorems related to optimization. J. Math. Anal. Appl. 120(2), 528-532 (1986)

Itoh, S, Takahashi, W: Single-valued mappings, multivalued mappings and fixed-point theorems. J. Math. Anal. Appl. 59(3), 514-521 (1977)

Klein, E, Thompson, AC: Theory of Correspondences. Including Applications to Mathematical Economics. Canadian Mathematical Society Series of Monographs and Advanced Texts. A Wiley-Interscience Publication. Wiley, New York (1984)

Kojima, M, Yamamoto, Y: A unified approach to the implementation of several restart fixed point algorithms and a new variable dimension algorithm. Math. Program. 28(3), 288-328 (1984)

Llorens-Fuster, E: Multivalued nonexpansive mappings with an almost convex displacement function. J. Nonlinear Convex Anal. 16(9), 1835-1845 (2015)

Pietramala, P: Convergence of approximating fixed points sets for multivalued nonexpansive mappings. Comment. Math. Univ. Carol. 32(4), 697-701 (1991)

Reich, S: Fixed point theorems for set-valued mappings. J. Math. Anal. Appl. 69(2), 353-358 (1979)

Todd, MJ: The Computation of Fixed Points and Applications. Lecture Notes in Economics and Mathematical Systems, vol. 124. Springer, Berlin (1976)

Ko, HM: Fixed point theorems for point-to-set mappings and the set of fixed points. Pac. J. Math. 42, 369-379 (1972)

Belluce, LP, Kirk, WA: Some fixed point theorems in metric and Banach spaces. Can. Math. Bull. 12, 481-491 (1969)

Montagnana, M, Vignoli, A: On quasiconvex mappings and fixed point theorems. Boll. Unione Mat. Ital. (4) 4, 870-878 (1971)

Danes̆, J: Fixed point theorems, Nemyckii and Uryson operators, and continuity of nonlinear mappings. Comment. Math. Univ. Carol. 11, 481-500 (1970)

García-Falset, J, Llorens-Fuster, E, Sims, B: Fixed point theory for almost convex functions. Nonlinear Anal. 32(5), 601-608 (1998)

Llorens-Fuster, E: Set-valued α-almost convex mappings. J. Math. Anal. Appl. 233(2), 698-712 (1999)

Panyanak, B: Endpoints of multivalued nonexpansive mappings in geodesic spaces. Fixed Point Theory Appl. 2015, 147 (2015)

Lim, TC: Remarks on some fixed point theorems. Proc. Am. Math. Soc. 60, 179-182 (1976)

Clarkson, JA: Uniformly convex spaces. Trans. Am. Math. Soc. 40(3), 396-414 (1936)

Megginson, RE: An Introduction to Banach Space Theory. Graduate Texts in Mathematics, vol. 183. Springer, New York (1998)

Kirk, WA: Nonexpansive mappings in metric and Banach spaces. Rend. Semin. Mat. Fis. Milano 51, 133-144 (1981)

Opial, Z: Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 73, 591-597 (1967)

Bridson, MR, Haefliger, A: Metric Spaces of Non-positive Curvature. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 319. Springer, Berlin (1999)

Kimura, Y, Satô, K: Halpern iteration for strongly quasinonexpansive mappings on a geodesic space with curvature bounded above by one. Fixed Point Theory Appl. 2013, 7 (2013)

Espínola, R, Fernández-León, A: $\operatorname {CAT}(k)$-Spaces, weak convergence and fixed points. J. Math. Anal. Appl. 353(1), 410-427 (2009)