Remarkable amine-TFA self assembly

American Chemical Society (ACS) - Tập 15 - Trang 356-362 - 2004
Chagit Denekamp1, Eisaam Egbaria1
1Department of Chemistry and Institute of Catalysis Science and Technology, Technion-Israel Institute of Technology, Technicon City, Haifa, Israel

Tóm tắt

Supramolecular assemblies that are formed between amines and trifluoroacetic acid were studied using electrospray ionization mass spectrometry. Distinctive association behavior of primary, secondary, and tertiary amines with trifluoroacetic acid upon identical experimental conditions is observed and indicates that steric effects dominate in the formation of these protonated clusters. Extraordinary complexation behavior is observed in the case of R−(+)-α-methylbenzylamine and 4-tert-butyl-cyclohexylamine that form high-order clusters. The strong relation between stereochemistry and assembly results in the specific association characteristics of trans 4-tert-butyl-1-phenylcyclohexylamine when compared with the cis isomer. The cis isomer gives rise to a highly abundant [M4TFA3+H]+ ion (M=amine molecule, TFA=trifluoroacetic acid), as observed for other primary amines. However, the trans isomer generates higher [MnTFAm+H]+ cluster ions, the largest and most abundant being an [M7TFA6+H]+ ion. Collision induced dissociation spectra that were recorded for several [MnTFAm+H]+ cluster ions typically show the consecutive losses of M·TFA moieties. Density functional theory calculations indicate that the highly abundant [M4TFA3+H]+ clusters are macrocycles and support the formation of these structures with TFA and not with acetic acid.

Tài liệu tham khảo

Loo, J. A. Studying Noncovalent Protein Complexes by Electrospray Ionization Mass Sspectrometry. Mass Spectrom. Rev. 1997, 16, 1–23. Schalley, C. A. Molecular Recognition and Supramolecular Chemistry in the Gas Phase. Mass Spectrom. Rev. 2001, 20, 253–309. Daniel, J. M.; Friess, S. D.; Rajagopalan, S.; Wendt, S.; Zenobi, R. Quantitative Determination of Noncovalent Binding Interactions Using Soft Ionization Mass Spectrometry. Int. J. Mass Spectrom. 2002, 216, 1–27. Rosu, F.; Gabelica, V.; Houssier, C.; Colson, P.; De Pauw, E. Triplex and Quadruplex DNA Structures Studied by Electrospray Mass Spectrometry. Rapid Commun. Mass Spectrom. 2002, 6, 1729–1736. Gabelica, V.; De Pauw, E.; Rosu, F. Interaction Between Antitumor Drugs and a Double-Stranded Oligonucleotide Studied by Eelectrospray Ionization Mass Spectrometry. J. Mass Spectrom. 1999, 32, 1328–1337. Yao, S.; Meng, J.-C.; Siuzdak, G.; Finn, M. G. New Catalysts for the Asymmetric Hydrosilylation of Ketones Discovered by Mass Spectrometry Screening. J. Org. Chem. 2003, 68, 2540–2546. Grigorean, G.; Ramirez, J.; Ahn, S.-H.; Lebrilla, C. B. A Mass Spectrometry Method for the Determination of Enantiomeric Excess in Mixtures of D,L-Amino Acids. Anal. Chem. 2000, 72, 4275–4281. Guo, J.; Wu, J.; Siuzdak, G.; Finn, M. G. Measurement of Enantiomeric Excess by Kinetic Resolution and Mass Spectrometry. Angew. Chem. Int. Ed. 1999, 38, 1755–1758. Liang, Y.; Bradshaw, J. S.; Izatt, R. M.; Pope, R. M.; Dearden, D. V. Analysis of Enantiomeric Excess Using Mass Spectrometry: Fast Atom Bombardment/Sector and Electrospray Ionization/Fourier Transform Mass Spectrometric Approaches. Int. J. Mass Spectrom. 1999, 185/186/187, 977–988. Sawada, M. Chiral Recognition Detected by Fast Atom Bombardment Mass Spectrometry. Mass Spectrom. Rev. 1997, 16, 73–90, and references cited therein. Shizuma, M.; Ohta, M.; Yamada, H. Takai, Y.; Nakaoki, T.; Takeda, T.; Sawada, M. Enantioselective Complexation of Chiral Linear Hosts Containing Monosaccharide Moieties with Chiral Organic Amines. Tetrahedron 2002, 58, 4319–4330. Sawada, M.; Takai, Y.; Imamura, H.; Yamada, H.; Takahashi, S.; Yamaoka, H.; Hirose, K.; Tobe, Y.; Tanaka, J. Chiral Recognizable Host-Guest interactions Detected by Fast-Atom Bombardment Mass Spectrometry: Application to the Enantiomeric Excess Determination of Primary Amines. Eur. J. Mass Spectrom. 2001, 7, 447–459. Shizuma, M.; Imamura, H.; Takai, Y.; Yamada, H.; Takeda, T.; Takahashi, S.; Sawada, M. Facile ee-Determination from a Single Measurement by Fast Atom Bombardment Mass Spectrometry: A Double Labeling Method. Int. J. Mass Spectrom. 2001, 210/211, 585–590. Shizuma, M.; Takai, Y.; Kawamura, M.; Takeda, T.; Sawada, M. Complexation Characteristics of Permethylated Cycloinulohexaose, Cycloinuloheptaose, and Cycloinulooctaose with Metal Cations. J. Chem. Soc. Perkin Trans. 2001, 2, 1306–1314. Shizuma, M.; Adachi, H.; Amemura, A.; Takai, Y.; Takeda, T.; Sawada, M. Chiral Discrimination of Permethylated gluco-Oligosaccharide Toward Amino Acid Ester salts. Tetrahedron 2001, 57, 4567–4578. Shizuma, M.; Adachi, H.; Kawamura, M.; Takai, Y.; Takeda, T.; Sawada, M. Chiral Discrimination of Fructo-Oligosaccharides Ttoward Amino Acid Derivatives by Induced-Fitting Chiral Recognition. J. Chem. Soc. Perkin Trans. 2001, 2, 592–601. Shizuma, M.; Imamura, H.; Takai, Y.; Yamada, H.; Takeda, T.; Takahashi, S.; Sawada, M. A New Reagent to Evaluate Optical Purity of Organic Amines by FAB Mass Spectrometry. Chem. Lett. 2000, 11, 1292–1293. Sawada, M.; Yamaoka, H.; Takai, Y.; Kawai, Y.; Yamada, H.; Azuma, T.; Fujioka, T.; Tanaka, T. Determination of Enantiomeric Excess for Organic Primary Amine Compounds by Chiral Recognition Fast-Atom Bombardment Mass Spectrometry. Int. J. Mass Spectrom 1999, 193(2/3), 123–130. Sawada, M.; Takai, Y.; Yamada, H.; Yamaoka, H.; Azuma, T.; Fujioka, T.; Kawai, Y.; Tanaka, T. Determination of Enantiomeric Excess for Amino Acid Ester Salts Using FAB Mass Spectrometry. Chem. Commun. 1998, 15, 1569–1570. vSawada, M.; Takai, Y.; Shizuma, M.; Takai, Y.; Takeda, T.; Adachi, H.; Uchiyama, T. Measurement of Chiral Amino Acid Discrimination by Cyclic Oligosaccharides: A Direct FAB Mass Spectrometric Approach. Chem. Commun. 1998, 14, 1453–1454. Sawada, M.; Takai, Y.; Yamada, H.; Nishida, J.; Kaneda, T.; Arakawa, R.; Okamoto, M.; Hirose, K.; Tanaka, T.; Naemura, K. Chiral Amino Acid Recognition Detected by Electrospray Ionization (ESI) and Fast Atom Bombardment (FAB) Mass Spectrometry (MS) Coupled with the Enantiomer-Labeled (EL) Guest Method. J. Chem. Soc. Perkin Trans. 1998, 2, 701–710. Siuzdak, G.; Bothner, B. Gas-Phase Micelles. Angew. Chem. 1995, 34, 2053–2055. Nohara, D.; Ohkoshi, T.; Sakai, T. The Possibility of the Direct Measurement of Micelle Weight by Electrospray Ionization Mass Spectrometry. Rapid Commun. Mass Spectrom. 1998, 12, 1933–1935. Rodriguez, M. A.; Yost, R. A. Interpretation of Electrospray/Ion Trap Mass Spectra of Bile Acids and Other Surfactants. Rapid Commun. Mass Spectrom. 2000, 14, 1398–1403. Cacace, F.; de Petris, G.; Giglio, E.; Punzo, F.; Troiani, A. Bile Salt Aggregates in the Gas Phase: An Electrospray Ionization Mass Spectrometric Study. Chem. Eur. J. 2002, 8, 1925–1933. Hao, C.; March, R. E.; Croley, T. R.; Smith, J. C.; Rafferty, S. P. Electrospray Ionization Tandem Mass Spectrometric Study of Salt Cluster Ions. Part 1. Investigations of Alkali Metal Chloride and Sodium Salt Cluster Ions. J. Mass Spectrom. 2001, 36, 79–96. Julian, R. R.; Hodyss, R.; Beauchamp, J. L. Salt Bridge Stabilization of Charged Zwitterionic Arginine Aggregates in the Gas Phase. J. Am. Chem. Soc. 2001, 123, 3577–3583. Strittmatter, E. F.; Wong, R. L.; Williams, E. R. Effects of Gas-Phase Basicity on the Proton Transfer between Organic Bases and Trifluoroacetic Acid in the Gas Phase: Energetics of Charge Solvation and Salt Bridges. J. Phys. Chem. A 2000, 104, 10271–10279. Maiorov, V. D.; Kislina, I. S.; Voloshenko, G. I.; Librovich, N. B. Complexes with Strong Symmetry Hydrogen Bonds and their Solvation in the Trifluoroacetic Acid-N,N-dimethylformamide System Studied by IR Spectroscopy. Russ. Chem. Bull. 2000, 49, 1526–1530. Shenderovich, I. G.; Tolstoy, P. M.; Golubev, N. S. Low-Temperature NMR Studies of the Structure and Dynamics of a Novel Series of Acid-Base Complexes of HF with Collidine Exhibiting Scalar Couplings Across Hydrogen Bonds. J. Am. Chem. Soc. 2003, 125, 11710–11720. Jones, B. L.; Rogers, R. M.; Jiang, L. Sodium Trifluoroacetate as a Tune/Calibration Compound for Positive- and Negative-Ion Electrospray Ionization Mass Spectrometry in the Mass Range of 100–4000 Da. J. Am. Soc. Mass Spectrom. 1998, 9, 977–980. Garner, C. M.; Terech, P.; Allegraud, J.-J.; Mistrot, B.; Nguyen, P.; de Geyer, A.; Rivera, D. Thermoreversible Gelation of Organic Liquids by Arylcyclohexanol Derivatives: Synthesis and Characterization of the Gels. J. Chem. Soc. Faraday Trans. 1998, 94, 2173–2179. Thurkauf, A.; de Costa, B.; Yamaguchi, S.-I.; Mattson, M. V.; Jacobson, A. E.; Rice, K. C.; Rogawski, M. A. Synthesis and Anticonvulsant Activity of 1-Phenylcyclohexylamine Analogs. J. Med. Chem. 1990, 33, 1452–1458. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E., Jr.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Baboul, A. G.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussisan 98; Gaussian, Inc.: Pittsburgh, PA, 1998. Mandelbaum, A. Stereochemical Effects in Mass Spectro-metry. Adv. Mass Spectrom. 1995, 13, 227–240. Terech, P.; Allegraud, J. J.; Garner, C. M. Thermoreversible Gelation of Organic Liquids by Arylcyclohexanol Derivatives: a Structural Study. Langmuir 1998, 14, 3991–3998.