Relevance of Biofilm Models in Periodontal Research: From Static to Dynamic Systems

Microorganisms - Tập 9 Số 2 - Trang 428
María C. Sánchez1,2, Andrea Alonso‐Español1, Honorato Ribeiro‐Vidal1, Bettina Alonso1, David Herrera1, Mariano Sanz1
1ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, University Complutense of Madrid, 28040 Madrid, Spain
2Medicine Department, Faculty of Medicine, University Complutense of Madrid, 28040 Madrid, Spain

Tóm tắt

Microbial biofilm modeling has improved in sophistication and scope, although only a limited number of standardized protocols are available. This review presents an example of a biofilm model, along with its evolution and application in studying periodontal and peri-implant diseases. In 2011, the ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) research group at the University Complutense of Madrid developed an in vitro biofilm static model using representative bacteria from the subgingival microbiota, demonstrating a pattern of bacterial colonization and maturation similar to in vivo subgingival biofilms. When the model and its methodology were standardized, the ETEP research group employed the validated in vitro biofilm model for testing in different applications. The evolution of this model is described in this manuscript, from the mere observation of biofilm growth and maturation on static models on hydroxyapatite or titanium discs, to the evaluation of the impact of dental implant surface composition and micro-structure using the dynamic biofilm model. This evolution was based on reproducing the ideal microenvironmental conditions for bacterial growth within a bioreactor and reaching the target surfaces using the fluid dynamics mimicking the salivary flow. The development of this relevant biofilm model has become a powerful tool to study the essential processes that regulate the formation and maturation of these important microbial communities, as well as their behavior when exposed to different antimicrobial compounds.

Từ khóa


Tài liệu tham khảo

Do, 2013, Oral biofilms: Molecular analysis, challenges, and future prospects in dental diagnostics, Clin. Cosmet. Investig. Dent., 5, 11

Samaranayake, 2017, Normal Oral Flora and the Oral Ecosystem, Dent. Clin. N. Am., 61, 199, 10.1016/j.cden.2016.11.002

Heidrich, 2011, 3D imaging of biofilms on implants by detection of scattered light with a scanning laser optical tomograph, Biomed. Opt. Express, 2, 2982, 10.1364/BOE.2.002982

Marrie, 1982, A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead, Circulation, 66, 1339, 10.1161/01.CIR.66.6.1339

Parsek, 2003, Bacterial biofilms: An emerging link to disease pathogenesis, Annu. Rev. Microbiol., 57, 677, 10.1146/annurev.micro.57.030502.090720

Anderson, 2008, Innate and induced resistance mechanisms of bacterial biofilms, Curr. Top. Microbiol. Immunol., 322, 85

Donlan, 2002, Biofilms: Microbial life on surfaces, Emerg. Infect. Dis., 8, 881, 10.3201/eid0809.020063

2018, Biofilm-related disease, Expert Rev. Anti-Infect. Ther., 16, 51, 10.1080/14787210.2018.1417036

Darouiche, 2004, Treatment of infections associated with surgical implants, N. Engl. J. Med., 350, 1422, 10.1056/NEJMra035415

Hooton, 2010, Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America, Clin. Infect. Dis., 50, 625, 10.1086/650482

Wanner, 1996, Mathematical modeling of mixed-culture biofilms, Biotechnol. Bioeng., 49, 172, 10.1002/(SICI)1097-0290(19960120)49:2<172::AID-BIT6>3.0.CO;2-N

Kim, 2016, Biofilm dispersion in Pseudomonas aeruginosa, J. Microbiol., 54, 71, 10.1007/s12275-016-5528-7

Klausen, 2006, Dynamics of development and dispersal in sessile microbial communities: Examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms, FEMS Microbiol. Lett., 261, 1, 10.1111/j.1574-6968.2006.00280.x

Sun, 2008, In vitro multispecies Lubbock chronic wound biofilm model, Wound Repair Regen., 16, 805, 10.1111/j.1524-475X.2008.00434.x

Kojic, 2004, Candida infections of medical devices, Clin. Microbiol. Rev., 17, 255, 10.1128/CMR.17.2.255-267.2004

Horn, 2014, Modeling of biofilm systems: A review, Adv. Biochem. Eng. Biotechnol., 146, 53

Williamson, 1976, Verification Studies of the Biofilm Model for Bacterial Substrate Utilization, Water Pollut. Control Fed., 48, 281

1976, The Significance of Pore Diffusion to Filter Denitrification, Water Pollut. Control Fed., 48, 377

Rittmann, 2018, A framework for good biofilm reactor modeling practice (GBRMP), Water Sci. Technol., 77, 1149, 10.2166/wst.2018.021

Hauduc, 2013, Critical review of activated sludge modeling: State of process knowledge, modeling concepts, and limitations, Biotechnol. Bioeng., 110, 24, 10.1002/bit.24624

Rittmann, 1992, Development and experimental evaluation of a steady-state, multispecies biofilm model, Biotechnol. Bioeng., 39, 914, 10.1002/bit.260390906

Mattei, 2018, Continuum and discrete approach in modeling biofilm development and structure: A review, J. Math. Biol., 76, 945, 10.1007/s00285-017-1165-y

McBain, 2009, Chapter 4: In vitro biofilm models: An overview, Adv. Appl. Microbiol., 69, 99, 10.1016/S0065-2164(09)69004-3

Dewhirst, 2010, The human oral microbiome, J. Bacteriol., 192, 5002, 10.1128/JB.00542-10

Selwitz, 2007, Dental caries, Lancet, 369, 51, 10.1016/S0140-6736(07)60031-2

Kassebaum, 2015, Global burden of untreated caries: A systematic review and metaregression, J. Dent. Res., 94, 650, 10.1177/0022034515573272

Demmer, 2010, Epidemiologic patterns of chronic and aggressive periodontitis, Periodontol. 2000, 53, 28, 10.1111/j.1600-0757.2009.00326.x

Holtfreter, 2015, Standards for reporting chronic periodontitis prevalence and severity in epidemiologic studies: Proposed standards from the Joint EU/USA Periodontal Epidemiology Working Group, J. Clin. Periodontol., 42, 407, 10.1111/jcpe.12392

Papapanou, 2018, Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions, J. Clin. Periodontol., 45, S162, 10.1111/jcpe.12946

Berglundh, 2018, Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions, J. Clin. Periodontol., 45, S286, 10.1111/jcpe.12957

Derks, 2015, Peri-implant health and disease. A systematic review of current epidemiology, J. Clin. Periodontol., 42, S158, 10.1111/jcpe.12334

Filoche, 2007, Caries-related plaque microcosm biofilms developed in microplates, Oral Microbiol. Immunol., 22, 73, 10.1111/j.1399-302X.2007.00323.x

Cury, 2010, S. mutans biofilm model to evaluate antimicrobial substances and enamel demineralization, Braz. Oral Res., 24, 135, 10.1590/S1806-83242010000200002

Azevedo, 2011, An in vitro biofilm model for enamel demineralization and antimicrobial dose-response studies, Biofouling, 27, 1057, 10.1080/08927014.2011.625473

Arthur, 2013, A defined-multispecies microbial model for studying enamel caries development, Caries Res., 47, 318, 10.1159/000347050

Cavalcanti, 2014, A three-species biofilm model for the evaluation of enamel and dentin demineralization, Biofouling, 30, 579, 10.1080/08927014.2014.905547

Totiam, 2007, A new in vitro model to study the relationship of gap size and secondary caries, Caries Res., 41, 467, 10.1159/000107934

Sissons, 1991, A multi-station dental plaque microcosm (artificial mouth) for the study of plaque growth, metabolism, pH, and mineralization, J. Dent. Res., 70, 1409, 10.1177/00220345910700110301

Peters, 1988, A constant-depth laboratory model film fermentor, Biotechnol. Bioeng., 32, 263, 10.1002/bit.260320302

Bradshaw, 1994, Effect of sugar alcohols on the composition and metabolism of a mixed culture of oral bacteria grown in a chemostat, Caries Res., 28, 251, 10.1159/000261977

Rudney, 2012, A reproducible oral microcosm biofilm model for testing dental materials, J. Appl. Microbiol., 113, 1540, 10.1111/j.1365-2672.2012.05439.x

Seemann, 2005, A novel in vitro microbial-based model for studying caries formation--development and initial testing, Caries Res., 39, 185, 10.1159/000084796

Seemann, 2006, An in vitro microbial-based model for studying caries-preventive agents, Acta Odontol. Scand., 64, 27, 10.1080/00016350500331096

Lynch, 2006, Effect of calcium glycerophosphate on demineralization in an in vitro biofilm model, Caries Res., 40, 142, 10.1159/000091061

Mei, 2013, Preventing root caries development under oral biofilm challenge in an artificial mouth, Med. Oral Patol. Oral Cir. Bucal, 18, e557

Mei, 2013, Antibacterial effects of silver diamine fluoride on multi-species cariogenic biofilm on caries, Ann. Clin. Microbiol. Antimicrob., 12, 4, 10.1186/1476-0711-12-4

Kramer, 2018, Glass ionomer cement inhibits secondary caries in an in vitro biofilm model, Clin. Oral Investig., 22, 1019, 10.1007/s00784-017-2184-1

Schwendicke, 2014, Cariogenic effects of probiotic Lactobacillus rhamnosus GG in a dental biofilm model, Caries Res., 48, 186, 10.1159/000355907

Wecke, 2000, A novel technique for monitoring the development of bacterial biofilms in human periodontal pockets, FEMS Microbiol. Lett., 191, 95, 10.1111/j.1574-6968.2000.tb09324.x

Takeuchi, 2004, Morphological analysis of subgingival biofilm formation on synthetic carbonate apatite inserted into human periodontal pockets, Aust. Dent. J., 49, 72, 10.1111/j.1834-7819.2004.tb00053.x

Periasamy, 2009, Mutualistic biofilm communities develop with Porphyromonas gingivalis and initial, early, and late colonizers of enamel, J. Bacteriol., 191, 6804, 10.1128/JB.01006-09

Hope, 2006, Biofilm structure and cell vitality in a laboratory model of subgingival plaque, J. Microbiol. Methods, 66, 390, 10.1016/j.mimet.2006.01.003

Kuramitsu, 2005, Biofilm formation by the periodontopathic bacteria Treponema denticola and Porphyromonas gingivalis, J. Periodontol., 76, 2047, 10.1902/jop.2005.76.11-S.2047

Walker, 2007, An in vitro biofilm model of subgingival plaque, Oral Microbiol. Immunol., 22, 152, 10.1111/j.1399-302X.2007.00336.x

Tamura, 2008, The effects of antibiotics on in vitro biofilm model of periodontal disease, Eur. J. Med. Res., 13, 439

Fernandez, 2017, A reproducible microcosm biofilm model of subgingival microbial communities, J. Periodontal Res., 52, 1021, 10.1111/jre.12473

Song, 2017, Comparison of periodontitis-associated oral biofilm formation under dynamic and static conditions, J. Periodontal Implant. Sci., 47, 219, 10.5051/jpis.2017.47.4.219

Ceri, 1999, The Calgary Biofilm Device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms, J. Clin. Microbiol., 37, 1771, 10.1128/JCM.37.6.1771-1776.1999

Dibdin, 1999, Steady-state biofilm: Practical and theoretical models, Methods Enzymol., 310, 296, 10.1016/S0076-6879(99)10025-9

Guggenheim, 2001, Validation of an in vitro biofilm model of supragingival plaque, J. Dent. Res., 80, 363, 10.1177/00220345010800011201

Zijnge, V., van Leeuwen, M.B., Degener, J.E., Abbas, F., Thurnheer, T., Gmur, R., and Harmsen, H.J. (2010). Oral biofilm architecture on natural teeth. PLoS ONE, 5.

Sanchez, 2011, Structure, viability and bacterial kinetics of an in vitro biofilm model using six bacteria from the subgingival microbiota, J. Periodontal Res., 46, 252, 10.1111/j.1600-0765.2010.01341.x

Auschill, 2001, Spatial distribution of vital and dead microorganisms in dental biofilms, Arch. Oral Biol., 46, 471, 10.1016/S0003-9969(00)00136-9

Datey, 2019, Shockwave Therapy Efficiently Cures Multispecies Chronic Periodontitis in a Humanized Rat Model, Front. Bioeng. Biotechnol., 7, 382, 10.3389/fbioe.2019.00382

Mohammed, 2018, The effect of metronidazole plus amoxicillin or metronidazole plus penicillin V on periodontal pathogens in an in vitro biofilm model, Clin. Exp. Dent. Res., 4, 6, 10.1002/cre2.96

Blanc, 2014, Characterization and application of a flow system for in vitro multispecies oral biofilm formation, J. Periodontal Res., 49, 323, 10.1111/jre.12110

Dabholkar, 2016, Comparative Evaluation of Antimicrobial Activity of Pomegranate-Containing Mouthwash Against Oral-Biofilm Forming Organisms: An Invitro Microbial Study, J. Clin. Diagn Res., 10, ZC65

Muller, 2017, Cytotoxicity and Antimicrobial Activity of Oral Rinses In Vitro, Biomed. Res. Int., 2017, 4019723, 10.1155/2017/4019723

Rabin, 2015, Biofilm formation mechanisms and targets for developing antibiofilm agents, Future Med. Chem., 7, 493, 10.4155/fmc.15.6

Macia, 2014, Antimicrobial susceptibility testing in biofilm-growing bacteria, Clin. Microbiol. Infect., 20, 981, 10.1111/1469-0691.12651

Jiao, 2019, Advancing antimicrobial strategies for managing oral biofilm infections, Int. J. Oral Sci., 11, 28, 10.1038/s41368-019-0062-1

Cawthorn, 2008, Selective PCR detection of viable Enterobacter sakazakii cells utilizing propidium monoazide or ethidium bromide monoazide, J. Appl. Microbiol., 105, 1178, 10.1111/j.1365-2672.2008.03851.x

Nocker, 2006, Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells, J. Microbiol. Methods, 67, 310, 10.1016/j.mimet.2006.04.015

Sanchez, 2014, Quantitative real-time PCR combined with propidium monoazide for the selective quantification of viable periodontal pathogens in an in vitro subgingival biofilm model, J. Periodontal Res., 49, 20, 10.1111/jre.12073

Sanchez, 2013, Analysis of viable vs. dead Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis using selective quantitative real-time PCR with propidium monoazide, J. Periodontal Res., 48, 213, 10.1111/j.1600-0765.2012.01522.x

Sanchez, 2017, Response to antiseptic agents of periodontal pathogens in in vitro biofilms on titanium and zirconium surfaces, Dent. Mater., 33, 446, 10.1016/j.dental.2017.01.013

Serrano, 2015, Efficacy of adjunctive anti-plaque chemical agents in managing gingivitis: A systematic review and meta-analysis, J. Clin. Periodontol., 42, S106, 10.1111/jcpe.12331

Palaska, 2013, Use of polyphenols in periodontal inflammation, Eur. J. Pharmacol., 720, 77, 10.1016/j.ejphar.2013.10.047

Cozens, 2012, Anti-adhesion methods as novel therapeutics for bacterial infections, Expert Rev. Anti Infect. Ther., 10, 1457, 10.1586/eri.12.145

Gutierrez, 2017, The Usefulness of Non-Toxic Plant Metabolites in the Control of Bacterial Proliferation, Probiotics Antimicrob. Proteins, 9, 323, 10.1007/s12602-017-9259-9

Thimothe, 2007, Chemical characterization of red wine grape (Vitis vinifera and Vitis interspecific hybrids) and pomace phenolic extracts and their biological activity against Streptococcus mutans, J. Agric. Food Chem., 55, 10200, 10.1021/jf0722405

Furiga, 2014, Preventive effects of an original combination of grape seed polyphenols with amine fluoride on dental biofilm formation and oxidative damage by oral bacteria, J. Appl. Microbiol., 116, 761, 10.1111/jam.12395

Shahzad, 2015, Selected dietary (poly)phenols inhibit periodontal pathogen growth and biofilm formation, Food Funct., 6, 719, 10.1039/C4FO01087F

Sanchez, M.C., Ribeiro-Vidal, H., Esteban-Fernandez, A., Bartolome, B., Figuero, E., Moreno-Arribas, M.V., Sanz, M., and Herrera, D. (2019). Antimicrobial activity of red wine and oenological extracts against periodontal pathogens in a validated oral biofilm model. BMC Complement. Altern. Med., 19.

Feghali, 2012, Cranberry proanthocyanidins: Natural weapons against periodontal diseases, J. Agric. Food Chem., 60, 5728, 10.1021/jf203304v

Bodet, 2008, Potential oral health benefits of cranberry, Crit. Rev. Food Sci. Nutr., 48, 672, 10.1080/10408390701636211

Philip, N., and Walsh, L.J. (2019). Cranberry Polyphenols: Natural Weapons against Dental Caries. Dent. J., 7.

Sanchez, M.C., Ribeiro-Vidal, H., Bartolome, B., Figuero, E., Moreno-Arribas, M.V., Sanz, M., and Herrera, D. (2020). New Evidences of Antibacterial Effects of Cranberry Against Periodontal Pathogens. Foods, 9.

Desbois, 2012, Potential applications of antimicrobial fatty acids in medicine, agriculture and other industries, Recent Pat. Antiinfect. Drug Discov., 7, 111, 10.2174/157489112801619728

Desbois, 2013, Antibacterial activity of long-chain polyunsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus, Mar. Drugs, 11, 4544, 10.3390/md11114544

Bernardes, 2012, The antibacterial properties of docosahexaenoic omega-3 fatty acid against the cystic fibrosis multiresistant pathogen Burkholderia cenocepacia, FEMS Microbiol. Lett., 328, 61, 10.1111/j.1574-6968.2011.02476.x

Serhan, 2007, Resolution phase of inflammation: Novel endogenous anti-inflammatory and proresolving lipid mediators and pathways, Annu. Rev. Immunol., 25, 101, 10.1146/annurev.immunol.25.022106.141647

Ribeiro-Vidal, H., Sanchez, M.C., Alonso-Espanol, A., Figuero, E., Ciudad, M.J., Collado, L., Herrera, D., and Sanz, M. (2020). Antimicrobial Activity of EPA and DHA against Oral Pathogenic Bacteria Using an In Vitro Multi-Species Subgingival Biofilm Model. Nutrients, 12.

Muehler, 2020, Insights Into Mechanisms of Antimicrobial Photodynamic Action Toward Biofilms Using Phenalen-1-One Derivatives as Photosensitizers, Front. Microbiol., 11, 589364, 10.3389/fmicb.2020.589364

Qi, 2019, Novel nanomaterial-based antibacterial photodynamic therapies to combat oral bacterial biofilms and infectious diseases, Int. J. Nanomed., 14, 6937, 10.2147/IJN.S212807

Ferrer, 2018, Inhibition of Oral Pathogens Adhesion to Human Gingival Fibroblasts by Wine Polyphenols Alone and in Combination with an Oral Probiotic, J. Agric. Food Chem., 66, 2071, 10.1021/acs.jafc.7b05466

Roy, 2018, Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action, Virulence, 9, 522, 10.1080/21505594.2017.1313372

Jenssen, 2006, Peptide antimicrobial agents, Clin. Microbiol. Rev., 19, 491, 10.1128/CMR.00056-05

Matto, 2004, Genetic heterogeneity and functional properties of intestinal bifidobacteria, J. Appl. Microbiol., 97, 459, 10.1111/j.1365-2672.2004.02340.x

Oren, 1998, Mode of action of linear amphipathic alpha-helical antimicrobial peptides, Biopolymers, 47, 451, 10.1002/(SICI)1097-0282(1998)47:6<451::AID-BIP4>3.0.CO;2-F

Tenorio, 2011, Identification of interspecies interactions affecting Porphyromonas gingivalis virulence phenotypes, J. Oral Microbiol., 3, 8396, 10.3402/jom.v3i0.8396

Bozec, 2015, Nanotechnology in dentistry: Prevention, diagnosis, and therapy, Int. J. Nanomed., 10, 6371

Jain, 2008, Recent approaches for the treatment of periodontitis, Drug Discov. Today, 13, 932, 10.1016/j.drudis.2008.07.010

Osorio, R., Alfonso-Rodriguez, C.A., Medina-Castillo, A.L., Alaminos, M., and Toledano, M. (2016). Bioactive Polymeric Nanoparticles for Periodontal Therapy. PLoS ONE, 11.

Osorio, 2014, Polymer nanocarriers for dentin adhesion, J. Dent. Res., 93, 1258, 10.1177/0022034514551608

Munchow, 2016, Synthesis and characterization of CaO-loaded electrospun matrices for bone tissue engineering, Clin. Oral Investig., 20, 1921, 10.1007/s00784-015-1671-5

Baalousha, 2013, Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles, Sci. Total Environ., 454–455, 119, 10.1016/j.scitotenv.2013.02.093

Kim, 2002, Pharmacokinetic profile of a locally administered doxycycline gel in crevicular fluid, blood, and saliva, J. Periodontol., 73, 1285, 10.1902/jop.2002.73.11.1285

Demirel, 1991, Topical application of doxycycline on periodontally involved root surfaces in vitro: Comparative analysis of substantivity on cementum and dentin, J. Periodontol., 62, 312, 10.1902/jop.1991.62.5.312

Sanchez, 2019, Antibacterial effects of polymeric PolymP-n Active nanoparticles. An in vitro biofilm study, Dent. Mater., 35, 156, 10.1016/j.dental.2018.11.015

Bueno, 2020, Antimicrobial effect of nanostructured membranes for guided tissue regeneration: An in vitro study, Dent. Mater., 36, 1566, 10.1016/j.dental.2020.09.011

Sanchez, 2019, In vitro biofilm formation on different ceramic biomaterial surfaces: Coating with two bactericidal glasses, Dent. Mater., 35, 883, 10.1016/j.dental.2019.03.003

Lo, A.W., Seers, C.A., Boyce, J.D., Dashper, S.G., Slakeski, N., Lissel, J.P., and Reynolds, E.C. (2009). Comparative transcriptomic analysis of Porphyromonas gingivalis biofilm and planktonic cells. BMC Microbiol., 9.

Liu, 2016, Comparative transcriptomic analysis of Clostridium acetobutylicum biofilm and planktonic cells, J. Biotechnol., 218, 1, 10.1016/j.jbiotec.2015.11.017

Whiteley, 2001, Gene expression in Pseudomonas aeruginosa biofilms, Nature, 413, 860, 10.1038/35101627

Waite, 2005, Transcriptome analysis of Pseudomonas aeruginosa growth: Comparison of gene expression in planktonic cultures and developing and mature biofilms, J. Bacteriol., 187, 6571, 10.1128/JB.187.18.6571-6576.2005

Sanchez, M.C., Romero-Lastra, P., Ribeiro-Vidal, H., Llama-Palacios, A., Figuero, E., Herrera, D., and Sanz, M. (2019). Comparative gene expression analysis of planktonic Porphyromonas gingivalis ATCC 33277 in the presence of a growing biofilm versus planktonic cells. BMC Microbiol., 19.

Romero-Lastra, P., Sanchez, M.C., Ribeiro-Vidal, H., Llama-Palacios, A., Figuero, E., Herrera, D., and Sanz, M. (2017). Comparative gene expression analysis of Porphyromonas gingivalis ATCC 33277 in planktonic and biofilms states. PLoS ONE, 12.

Romero-Lastra, P., Sanchez, M.C., Llama-Palacios, A., Figuero, E., Herrera, D., and Sanz, M. (2019). Gene expression of Porphyromonas gingivalis ATCC 33277 when growing in an in vitro multispecies biofilm. PLoS ONE, 14.

Potupa, 2017, Aggregatibacter actinomycetemcomitans Growth in Biofilm versus Planktonic State: Differential Expression of Proteins, J. Proteome Res., 16, 3158, 10.1021/acs.jproteome.7b00127

Potupa, 2020, Proteomic analysis of Fusobacterium nucleatum growth in biofilm versus planktonic state, Mol. Oral Microbiol., 35, 168, 10.1111/omi.12303

Jung, 2012, Systematic review of the survival rate and the incidence of biological, technical, and aesthetic complications of single crowns on implants reported in longitudinal studies with a mean follow-up of 5 years, Clin. Oral Implant. Res., 23, 2, 10.1111/j.1600-0501.2012.02547.x

Pjetursson, 2012, A systematic review of the survival and complication rates of implant-supported fixed dental prostheses (FDPs) after a mean observation period of at least 5 years, Clin. Oral Implant. Res., 23, 22, 10.1111/j.1600-0501.2012.02546.x

Rakic, 2013, Bone loss biomarkers associated with peri-implantitis. A cross-sectional study, Clin. Oral Implant. Res., 24, 1110, 10.1111/j.1600-0501.2012.02518.x

Beikler, 2011, Oral biofilm-associated diseases: Trends and implications for quality of life, systemic health and expenditures, Periodontol. 2000, 55, 87, 10.1111/j.1600-0757.2010.00360.x

Leonhardt, 1999, Microbial findings at failing implants, Clin. Oral Implant. Res., 10, 339, 10.1034/j.1600-0501.1999.100501.x

Traini, 2016, Porphyromonas gingivalis biofilm formation in different titanium surfaces, an in vitro study, Clin. Oral Implant. Res., 27, 918, 10.1111/clr.12659

Pita, 2015, Oral Streptococci Biofilm Formation on Different Implant Surface Topographies, Biomed. Res. Int., 2015, 159625, 10.1155/2015/159625

Aguayo, 2015, Nanoadhesion of Staphylococcus aureus onto Titanium Implant Surfaces, J. Dent. Res., 94, 1078, 10.1177/0022034515591485

Lima, 2015, Effect of UV-photofunctionalization on oral bacterial attachment and biofilm formation to titanium implant material, Biomaterials, 67, 84, 10.1016/j.biomaterials.2015.07.030

Papavasileiou, 2015, Peri-implant Biofilm Formation on Luting Agents Used for Cementing Implant-Supported Fixed Restorations: A Preliminary In Vivo Study, Int. J. Prosthodont., 28, 371, 10.11607/ijp.4100

Ready, 2015, In vitro evaluation of the antibiofilm properties of chlorhexidine and delmopinol on dental implant surfaces, Int. J. Antimicrob. Agents, 45, 662, 10.1016/j.ijantimicag.2015.01.020

Schmidt, 2017, Influence of different instrumentation modalities on the surface characteristics and biofilm formation on dental implant neck, in vitro, Clin. Oral Implant. Res., 28, 483, 10.1111/clr.12823

Sridhar, 2016, In Vitro Evaluation of the Effects of Multiple Oral Factors on Dental Implants Surfaces, J. Oral Implantol., 42, 248, 10.1563/aaid-joi-D-15-00165

Marotti, 2013, Decontamination of dental implant surfaces by means of photodynamic therapy, Lasers Med. Sci., 28, 303, 10.1007/s10103-012-1148-6

Paster, 2001, Bacterial diversity in human subgingival plaque, J. Bacteriol., 183, 3770, 10.1128/JB.183.12.3770-3783.2001

Sanchez, 2014, An in vitro biofilm model associated to dental implants: Structural and quantitative analysis of in vitro biofilm formation on different dental implant surfaces, Dent. Mater., 30, 1161, 10.1016/j.dental.2014.07.008

Franco, 2016, Initial oral biofilm formation on titanium implants with different surface treatments: An in vivo study, Arch. Oral Biol., 69, 33, 10.1016/j.archoralbio.2016.05.006

Bermejo, 2019, Topographic characterization of multispecies biofilms growing on dental implant surfaces: An in vitro model, Clin. Oral Implant. Res., 30, 229, 10.1111/clr.13409

Bermejo, 2019, Biofilm formation on dental implants with different surface micro-topography: An in vitro study, Clin. Oral Implant. Res., 30, 725, 10.1111/clr.13455

Drescher, 2011, Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering, Proc. Natl. Acad. Sci. USA, 108, 10940, 10.1073/pnas.1019079108

Sanchez, 2019, Biofilm formation on dental implant surfaces—In vitro dynamic model, Clin. Oral Implant. Res., 30, 8, 10.1111/clr.10_13508

Dawes, 1989, Estimation of the velocity of the salivary film at some different locations in the mouth, J. Dent. Res., 68, 1479, 10.1177/00220345890680110201