Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation

Journal of Applied Physics - Tập 102 Số 3 - 2007
Nathaniel J. Quitoriano1, Eugene A. Fitzgerald1
1Massachusetts Institute of Technology Department of Materials Science and Engineering, , Cambridge, Massachusetts 02139

Tóm tắt

Using compositionally graded buffers, we demonstrate InP on GaAs suitable for minority carrier devices, exhibiting a threading dislocation density of 1.2×106∕cm2 determined by plan-view transmission electron microscopy. To further quantify the quality of this InP on GaAs, a photoluminescence (PL) structure was grown to compare the InP on graded buffer quality to bulk InP. Comparable room and low temperature (20K) PL was attained. (The intensity from the PL structure grown on the InP on GaAs was ∼70% of that on bulk InP at both temperatures.) To achieve this, graded buffers in the InGaAs, InGaP, InAlAs, and InGaAlAs materials systems were explored. In each of these systems, under certain growth conditions, microscopic compositional inhomogeneities blocked dislocation glide and led to threading dislocation densities sometimes >109∕cm2. These composition variations are caused by surface-driven, phase separated, Ga-rich regions. As the phase separation blocked dislocation glide and led to high threading dislocation densities, conditions for avoiding phase separation were explored and identified. Composition variations could be prevented in InxGa1−xAs graded buffers grown at 725°C to yield low dislocation densities of 9×105∕cm2 for x<0.34, accommodating ∼70% of the lattice mismatch between GaAs and InP. Compositional grading in the InyGa1−yP (0.8<y<1.0) materials system grown at 700°C was found to accommodate the remaining lattice mismatch to achieve high-quality InP on GaAs with little rise in threading dislocation density by avoiding phase separation.

Từ khóa


Tài liệu tham khảo

2005, Appl. Phys. Lett., 86, 152101, 10.1063/1.1897831

1988, Appl. Phys. Lett., 52, 1496, 10.1063/1.99110

1994, J. Appl. Phys., 75, 263, 10.1063/1.355894

1991, Mater. Sci. Rep., 7, 87, 10.1016/0920-2307(91)90006-9

1970, J. Appl. Phys., 41, 3800, 10.1063/1.1659510

2003, J. Appl. Phys., 93, 362, 10.1063/1.1525865

2003, J. Vac. Sci. Technol. B, 21, 1064, 10.1116/1.1576397

2006, Thin Solid Films, 508, 136, 10.1016/j.tsf.2005.07.328

1997, Line, Point and Surface Defect Morphology of Graded, Relaxed GeSi Alloys on Si Substrates, 3

1997, Influence of Strain on Semiconductor Thin Film Epitaxy, 1048

1997, J. Appl. Phys., 81, 3108, 10.1063/1.364345

1990, J. Appl. Phys., 68, 2073, 10.1063/1.346560

1998, Appl. Phys. Lett., 72, 1608, 10.1063/1.121129

1998, J. Appl. Phys., 83, 592, 10.1063/1.366646

1999, J. Vac. Sci. Technol. B, 17, 1485, 10.1116/1.590779

2004, J. Vac. Sci. Technol. B, 22, 1899, 10.1116/1.1775003

1998, Appl. Phys. Lett., 72, 1718, 10.1063/1.121162

1963, Acta Metall., 11, 1275, 10.1016/0001-6160(63)90022-1

1977, Metall. Trans. A, 8A, 347, 10.1007/BF02661649

Turchi, 1994, NATO Advanced Study Institute on Statics and Dynamics of Alloy Phase Transformations, 361, 10.1007/978-1-4615-2476-2

1979, Metall. Trans. A, 10A, 633, 10.1007/BF02658327

1980, Acta Metall., 28, 405, 10.1016/0001-6160(80)90175-3

2007, J. Appl. Phys., 101, 073509, 10.1063/1.2717156

2002, J. Appl. Phys., 91, 2429, 10.1063/1.1433174

2004, Strain relaxation and Dislocation Filtering in Metamorphic HBT and HEMT Structures Grown on GaAs Substrates by MBE, 346

1997, Appl. Phys. Lett., 71, 2961, 10.1063/1.120229

1985, IEEE Electron Device Lett., ED-6, 491

2000, Appl. Phys. Lett., 76, 2077, 10.1063/1.126260

1999, Appl. Phys. Lett., 75, 1305, 10.1063/1.124676

1992, Formation of Lateral Quantum-Wells in Vertical Short-Period Superlattices, 589

1982, Appl. Phys. Lett., 40, 963, 10.1063/1.92968

1982, J. Phys. Colloq., 43, 11

1982, 405

1992, Phys. Rev. B, 45, 6614, 10.1103/PhysRevB.45.6614

2002, Transmission Electron Microscopy and Diffractometry of Materials

1962, Acta Metall., 10, 179, 10.1016/0001-6160(62)90114-1

1992, J. Vac. Sci. Technol. B, 10, 1807, 10.1116/1.586204

1981, J. Cryst. Growth, 51, 367, 10.1016/0022-0248(81)90322-5

1993, 77

1984, J. Cryst. Growth, 68, 589, 10.1016/0022-0248(84)90466-4

1989, 758

1963, Trans. Metall. Soc. AIME, 227, 1166

1978, Acta Metall., 26, 499, 10.1016/0001-6160(78)90175-X

1985, Philos. Mag. A, 52, 509, 10.1080/01418618508237643

1962, Acta Metall., 10, 260, 10.1016/0001-6160(62)90128-1

1993, J. Appl. Phys., 74, 7198, 10.1063/1.355037

1989, J. Appl. Phys., 66, 2388, 10.1063/1.344245

1990, J. Appl. Phys., 67, 2310, 10.1063/1.345526

1981, J. Electrochem. Soc., 128, 2224, 10.1149/1.2127222

1983, J. Electron. Mater., 12, 863, 10.1007/BF02655299

1982, Phys. Rev. Lett., 48, 170, 10.1103/PhysRevLett.48.170

1991, Phys. Rev. B, 44, 11178, 10.1103/PhysRevB.44.11178

1999, Phys. Rev. B, 60, 8185, 10.1103/PhysRevB.60.8185

1990, Appl. Phys. Lett., 57, 1922, 10.1063/1.104013

1991, Appl. Phys. Lett., 59, 1957, 10.1063/1.106148

1985, Philos. Mag. A, 51, 389, 10.1080/01418618508237563

2002, Mater. Sci. Eng., B, B91–B92, 269

2005, J. Cryst. Growth, 282, 36, 10.1016/j.jcrysgro.2005.04.089

2005, Jpn. J. Appl. Phys., Part 1, 44, 6403, 10.1143/JJAP.44.6403

2004, 633

L. M. McGill, thesis, Massachusetts Institute of Technology, 2004.

A. Y. Kim, thesis, Massachusetts Institute of Technology, 2000.

M. T. Bulsara, thesis, Massachusetts Institute of Technology, 1998.

1993, J. Vac. Sci. Technol. B, 11, 1056, 10.1116/1.587007

1974, J. Cryst. Growth, 27, 21, 10.1016/0022-0248(74)90416-3

1966, Acta Metall., 14, 1053, 10.1016/0001-6160(66)90193-3

1958, Trans. Metall. Soc. AIME, 212, 33

1959, Acta Metall., 7, 18, 10.1016/0001-6160(59)90164-6

1985, J. Appl. Phys., 57, 4610, 10.1063/1.335368

1996, J. Appl. Phys., 80, 3327, 10.1063/1.363243

2001, J. Appl. Phys., 90, 2730, 10.1063/1.1389333

1989, Electronic Properties of Dislocations in Heavily Dislocated Quantum Well Structures: Doping Effects, 393

1982, Theory of Dislocations

2005, Appl. Phys. Lett., 86, 171902, 10.1063/1.1906308