Relativity of arithmetic as a fundamental symmetry of physics
Tóm tắt
Arithmetic operations can be defined in various ways, even if one assumes commutativity and associativity of addition and multiplication, and distributivity of multiplication with respect to addition. In consequence, whenever one encounters ‘plus’ or ‘times’ one has certain freedom of interpreting this operation. This leads to some freedom in definitions of derivatives, integrals and, thus, practically all equations occurring in natural sciences. A change of realization of arithmetic, without altering the remaining structures of a given equation, plays the same role as a symmetry transformation. An appropriate construction of arithmetic turns out to be particularly important for dynamical systems in fractal space-times. Simple examples from classical and quantum, relativistic and nonrelativistic physics are discussed, including the eigenvalue problem for a quantum harmonic oscillator. It is explained why the change of arithmetic is not equivalent to the usual change of variables.
Tài liệu tham khảo
Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: P-Adic Analysis and Mathematical Physics. World Scientific, Singapore (1994)
Albeverio, S., Khrennikov, AYu., Shelkovich, V.M.: Theory of p-Adic Distributions: Linear and Nonlinear Models. Cambridge University Press, Cambridge (2010)
Silverman, J.H.: The Arithmetic of Dynamical Systems. Springer, New York (2007)
Burgin, M.: Non-diophantine Arithmetics. Ukrainian Academy of Information Sciences, Kiev (1997) (in Russian). Introduction to projective arithmetics. arXiv:1010.3287 [math.GM] (2010)
Benioff, P.: New gauge field from extension of space time parallel transport of vector spaces to the underlying number systems. Int. J. Theor. Phys. 50, 1887 (2011)
Benioff, P.: Principal fiber bundle description of number scaling for scalars and vectors: application to gauge theory. arXiv:1503.05600 [math-ph] (2015)
Dovgosheya, O., Martiob, O., Ryazanova, V., Vuorinenc, M.: The cantor function. Expo. Math. 24, 1 (2006)
Easton Jr, R.L.: Fourier Methods in Imaging. Wiley, Chichester (2010)
Ambjørn, J., Jurkiewicz, J., Loll, R.: Reconstructing the universe. Phys. Rev. D 72, 064014 (2005)
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1998)
Thirring, W.E.: A Course in Mathematical Physics, vol. 3. Springer, Berlin (1981)
Amrein, W.O.: Hilbert Space Methods in Quantum Mechanics. EPFL Press, Lausanne (2009)
Edgar, G.: Measure, Topology, and Fractal Geometry, 2nd edn. Springer, New York (2008)
Nottale, L.: Scale Relativity and Fractal Space-Time. Imperial College Press, London (2011)
Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976)
Bongiorno, D., Corrao, G.: On the fundamental theorem of calculus for fractal sets. Fractals 23, 1550008 (2015)
Hilger, S.: Analysis on measure chains - a unified approach to continuous and discrete calculus. Results Math. 18, 19 (1990)
Bohner, M., Peterson, A.: Dynamic Equations on Time Scales. Birkhäuser, Boston (2001)
Cieśliński, J.L.: New definitions of exponential, hyperbolic and trigonometric functions on time scales. J. Math. Anal. Appl. 388, 8 (2012)
Tsallis, C.: Introduction to Nonextensive Statistical Mechanics. Springer, London (2009)
Naudts, J.: Generalised Thermostatistics. Springer, London (2011)
Czachor, M., Naudts, J.: Thermostatistics based on Kolmogorov–Nagumo averages: unifying framework for extensive and nonextensive generalizations. Phys. Lett. A 298, 369 (2002)
Jizba, P., Arimitsu, T.: The world according to Rényi: thermodynamics of multifractal systems Ann. Phys. 312, 17–59 (2004)
Rényi, A.: Some fundamental questions of information theory, MTA III. Oszt. Közl. 10, 251 (1960). Reprinted in Selected Papers of Alfred Rényi, vol. 2, pp. 526–552, Akadémiai Kiadó, Budapest (1976)
Dettmann, C.P., Frankel, N.E.: J. Phys. A 26, 1009 (1993)
Aerts, D., Czachor, M., Kuna, M.: Crystallization of space: space-time fractals from fractal arithmetics. arXiv:1506.00487 [gr-qc] (2015)
Benedetti, D.: Fractal properties of quantum spacetime. Phys. Rev. Lett. 102, 111303 (2009)
Modesto, L., Nicolini, P.: Spectral dimension of a quantum universe. Phys. Rev. D 81, 104040 (2010)
Nicolini, P., Spallucci, E.: Un-spectral dimension and quantum spacetime phases. Phys. Lett. B 695, 290 (2011)
Calcagni, G., Oriti, D., Thrigen, J.: Dimensional flow in discrete quantum geometries. Phys. Rev. D 91, 084047 (2015)
Doebner, H.-D., Goldin, G.A.: Introducing nonlinear gauge transformations in a family of nonlinear Schrödinger equations. Phys. Rev. A 54, 3764 (1996)
Doebner, H.-D., Goldin, G.A.: On a general nonlinear Schrödinger equation admitting diffusion currents. Phys. Lett. A 162, 397 (1992)
Doebner, H.-D., Goldin, G.A.: Properties of nonlinear Schrodinger equations associated with diffeomorphism group representations. J. Phys. A Math. Gen. 27, 1771 (1994)
Goldin, G.A.: Gauge transformations for a family of nonlinear Schrödinger equations. J. Nonlinear Math. Phys. 4, 7 (1997)
Czachor, M.: Structure of nonlinear gauge transformations. Phys. Rev. A 57, R2263 (1998)