Relative left derived functors of tensor product functors
Tóm tắt
We introduce and study the relative left derived functor Tor
n
(F,F′)(−,−) in the module category, which unifies several related left derived functors. Then we give some criteria for computing the F-resolution dimensions of modules in terms of the properties of TorTor
n
(F,F′)(−,−). We also construct a complete and hereditary cotorsion pair relative to balanced pairs. Some known results are obtained as corollaries.
Tài liệu tham khảo
Chen, X. W.: Homotopy equivalences induced by balanced pairs. J. Algebra, 324, 2718–2731 (2010)
Enochs, E. E.: Injective and flat covers, envelopes and resolvents. Israel J. Math., 39, 33–38 (1981)
Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra, De Gruyter Exp. Math., vol. 30, Walter de Gruyter, Berlin, 2000
Enochs, E. E., Jenda, O. M. G., Lopez-Ramos, J. A.: The existence of Gorenstein flat covers. Math. Scand., 94, 46–62 (2004)
Göbel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules, De Gruyter Exp. Math., vol. 41, Walter de Gruyter, Berlin, 2012
Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra, 132, 1913–1923 (2004)
Holm, H.: Gorenstein derived functors. Proc. Amer. Math. Soc., 189, 167–193 (2004)
Holm, H., Jørgensen, P.: Covers, preenvelopes, and purity. Illinois J. Math., 52, 691–703 (2008)
Rotman, J.: Introductions to Homological Algebra, Academic Press, Inc., New York-London, 2009
Sather-Wagstaff, S., Sharif, T., White, D.: Stability of Gorenstein categories. J. London Math. Soc., 77, 481–502 (2008)
Wang, J. F., Li, H. H., Huang, Z. Y.: Applications of exact structures in abelian categories. Publ. Math. Debrecen, 88, 269–286 (2016)
Yang, G.: Homological properties of modules over Ding–Chen rings. J. Korean Math. Soc., 49, 31–47 (2012)
Yang, G., Liang, L.: All modules have Gorenstein flat precovers. Comm. Algebra, 42, 3078–3085 (2014)