Relative left derived functors of tensor product functors

Springer Science and Business Media LLC - Tập 32 - Trang 753-764 - 2016
Jun Fu Wang1,2, Zhao Yong Huang2
1School of Mathematical Sciences and Chemical Engineering, Changzhou Institute of Technology, Changzhou, P. R. China
2Department of Mathematics, Nanjing University, Nanjing, P. R. China

Tóm tắt

We introduce and study the relative left derived functor Tor n (F,F′)(−,−) in the module category, which unifies several related left derived functors. Then we give some criteria for computing the F-resolution dimensions of modules in terms of the properties of TorTor n (F,F′)(−,−). We also construct a complete and hereditary cotorsion pair relative to balanced pairs. Some known results are obtained as corollaries.

Tài liệu tham khảo

Chen, X. W.: Homotopy equivalences induced by balanced pairs. J. Algebra, 324, 2718–2731 (2010) Enochs, E. E.: Injective and flat covers, envelopes and resolvents. Israel J. Math., 39, 33–38 (1981) Enochs, E. E., Jenda, O. M. G.: Relative Homological Algebra, De Gruyter Exp. Math., vol. 30, Walter de Gruyter, Berlin, 2000 Enochs, E. E., Jenda, O. M. G., Lopez-Ramos, J. A.: The existence of Gorenstein flat covers. Math. Scand., 94, 46–62 (2004) Göbel, R., Trlifaj, J.: Approximations and Endomorphism Algebras of Modules, De Gruyter Exp. Math., vol. 41, Walter de Gruyter, Berlin, 2012 Holm, H.: Gorenstein homological dimensions. J. Pure Appl. Algebra, 132, 1913–1923 (2004) Holm, H.: Gorenstein derived functors. Proc. Amer. Math. Soc., 189, 167–193 (2004) Holm, H., Jørgensen, P.: Covers, preenvelopes, and purity. Illinois J. Math., 52, 691–703 (2008) Rotman, J.: Introductions to Homological Algebra, Academic Press, Inc., New York-London, 2009 Sather-Wagstaff, S., Sharif, T., White, D.: Stability of Gorenstein categories. J. London Math. Soc., 77, 481–502 (2008) Wang, J. F., Li, H. H., Huang, Z. Y.: Applications of exact structures in abelian categories. Publ. Math. Debrecen, 88, 269–286 (2016) Yang, G.: Homological properties of modules over Ding–Chen rings. J. Korean Math. Soc., 49, 31–47 (2012) Yang, G., Liang, L.: All modules have Gorenstein flat precovers. Comm. Algebra, 42, 3078–3085 (2014)