Relationships between Ice Water Content and Volume Extinction Coefficient from In Situ Observations for Temperatures from 0° to −86°C: Implications for Spaceborne Lidar Retrievals

Journal of Applied Meteorology and Climatology - Tập 53 Số 2 - Trang 479-505 - 2014
Andrew J. Heymsfield1, D. M. Winker2, M. A. Avery2, Mark Vaughan2, Glenn S. Diskin2, Min Deng3, Valentin Mitev4, Renaud Matthey5
1National Center for Atmospheric Research Boulder, Colorado
2NASA Langley Research Center, Hampton Roads, Virginia
3University of Wyoming, Laramie, Wyoming
4Centre Suisse d’Electronique et de Microtechnique SA, Neuchâtel, Switzerland
5Institute of Physics, University of Neuchâtel, Neuchâtel, Switzerland

Tóm tắt

AbstractAn examination of 2 yr of Cloud–Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) lidar observations and CloudSat cloud radar observations shows that ice clouds at temperatures below about −45°C frequently fall below the CloudSat radar’s detection threshold yet are readily detectable by the lidar. The CALIPSO ice water content (IWC) detection threshold is about 0.1 versus 5 mg m−3 for CloudSat. This comparison emphasizes the need for developing a lidar-only IWC retrieval method that is reliable for high-altitude ice clouds at these temperatures in this climatically important zone of the upper troposphere. Microphysical measurements from 10 aircraft field programs, spanning latitudes from the Arctic to the tropics and temperatures from −86° to 0°C, are used to develop relationships between the IWC and volume extinction coefficient σ in visible wavelengths. Relationships used to derive a radiatively important ice cloud property, the ice effective diameter De, from σ are also developed. Particle size distributions (PSDs) and direct IWC measurements, together with evaluations of the ice particle shapes and comparisons with semidirect extinction measurements, are used in this analysis. Temperature-dependent De(σ) and IWC–σ relationships developed empirically facilitate the retrieval of IWC from lidar-derived σ and De values and for comparison with other IWC observations. This suite of empirically derived relationships can be expressed analytically. These relationships can be used to derive IWC and De from σ and are developed for use in climate models to derive σ from prognosed values of IWC and specified PSD properties.

Từ khóa


Tài liệu tham khảo

Baum, 2011, Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds, J. Appl. Meteor. Climatol., 50, 1037, 10.1175/2010JAMC2608.1

Boudala, 2002, Parameterization of effective ice particle size for high-latitude clouds, Int. J. Climatol., 22, 1267, 10.1002/joc.774

Delanoë, 2008, A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer, J. Geophys. Res., 113, D07204, 10.1029/2007JD009000

de Reus, 2009, Evidence for ice particles in the tropical stratosphere from in situ measurements, Atmos. Chem. Phys., 9, 6775, 10.5194/acp-9-6775-2009

Field, 2006, Shattering and particle interarrival times measured by optical array probes in ice clouds, J. Atmos. Oceanic Technol., 23, 1357, 10.1175/JTECH1922.1

Foot, 1988, Some observations of the optical properties of clouds: II. Cirrus, Quart. J. Roy. Meteor. Soc., 114, 145, 10.1002/qj.49711447908

Gardiner, 1985, Degradation of in-cloud forward scattering spectrometer probe measurements in the presence of ice particles, J. Oceanic Atmos. Technol., 2, 171, 10.1175/1520-0426(1985)002<0171:DOICFS>2.0.CO;2

Hartmann, 1992, The effect of cloud type on Earth’s energy balance: Global analysis, J. Climate, 5, 1281, 10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2

Heymsfield, 2005, Extinction-ice water content-effective radius algorithms for CALIPSO, Geophys. Res. Lett., 32, 10.1029/2005GL022742

Heymsfield, 2009, Microphysics of maritime tropical convective updrafts at temperatures from −20° to −60°C, J. Atmos. Sci., 66, 3530, 10.1175/2009JAS3107.1

Heymsfield, 2013

Isaac, 2005

Josset, 2012, Cirrus optical depth and lidar ratio retrieval from combined CALIPSO-CloudSat observations using ocean surface echo, J. Geophys. Res., 117, D05207, 10.1029/2011JD016959

Korolev, 2011, Small ice particles in tropospheric clouds: Fact or artifact? Airborne Icing Instrumentation Evaluation Experiment, Bull. Amer. Meteor. Soc., 92, 967, 10.1175/2010BAMS3141.1

Martins, 2011, Properties of cirrus and subvisible cirrus from nighttime Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), related to atmospheric dynamics and water vapor, J. Geophys. Res., 116, 10.1029/2010JD014519

Miloshevich, 1997, A balloon-borne continuous cloud particle replicator for measuring vertical profiles of cloud microphysical properties: Instrument design, performance, and collection efficiency analysis, J. Atmos. Oceanic Technol., 14, 753, 10.1175/1520-0426(1997)014<0753:ABBCCP>2.0.CO;2

Podolske, 2003, Calibration and data retrieval algorithms for the NASA Langley/Ames Diode Laser Hygrometer for the NASA Transport and Chemical Evolution Over the Pacific (TRACE-P) mission, J. Geophys. Res., 108, 8792, 10.1029/2002JD003156

Schmitt, 2009, The size distribution and mass-weighted terminal velocity of low-latitude tropopause cirrus crystal populations, J. Atmos. Sci., 66, 2013, 10.1175/2009JAS3004.1

Stein, 2011, A comparison among four different retrieval methods for ice-cloud properties using data from CloudSat, CALIPSO, and MODIS, J. Appl. Meteor. Climatol., 50, 1952, 10.1175/2011JAMC2646.1

Toon, 2010, Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J04, 10.1029/2009JD013073

Vaughan, 2008, SCOUT-O3/ACTIVE: High-altitude aircraft measurements around deep tropical convection, Bull. Amer. Meteor. Soc., 89, 647, 10.1175/BAMS-89-5-647

Waliser, 2009, Cloud ice: A climate model challenge with signs and expectations of progress, J. Geophys. Res., 114, D00A21, 10.1029/2008JD010015

Winker, 2009, Overview of the CALIPSO mission and CALIOP data processing algorithms, J. Atmos. Oceanic Technol., 26, 2310, 10.1175/2009JTECHA1281.1

Young, 2009, The retrieval of profiles of particulate extinction from Cloud–Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Algorithm description, J. Atmos. Oceanic Technol., 26, 1105, 10.1175/2008JTECHA1221.1

Young, 2013, The retrieval of profiles of particulate extinction from Cloud–Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) data: Uncertainty and error sensitivity analyses, J. Atmos. Oceanic Technol., 30, 395, 10.1175/JTECH-D-12-00046.1