Relationship between proton–proton nmr coupling constants and substituent electronegativities. III. Conformational analysis of proline rings in solution using a generalized Karplus equation

Biopolymers - Tập 20 Số 6 - Trang 1211-1245 - 1981
C. A. G. Haasnoot1, Frank A.A.M. de Leeuw1, Harry P. M. de Leeuw1, C. Altona1
1State University, Gorlaeus Laboratory, P.O. Box 9502, 2300 RA Leiden, The Netherlands

Tóm tắt

AbstractThe relationship between published vicinal proton–proton coupling constants and the pseudorotation properties of the pyrrolidine ring in L‐proline, 4‐hydroxy‐L‐proline, 4‐fluoro‐L‐proline, and several linear and cyclic model proline peptides is investigated. Compared to earlier studies, several important improvements are incorporated: (1) a new empirical generalization of the classical Karplus equation is utilized, which allows a valid correction for the effects of electronegativity and orientation of substitutents on 3JHH; (2) an empirical correlation between proton–proton torsion angles and the pseudorotational parameters P and τm is derived; and (3) the best fit of the conformational parameters to the experimental coupling constants is obtained by means of a computerized iterative least‐squares procedure. Two pseudorotation ranges were considered, classified as type N (χ2 positive sign) and type S (χ2 negative sign). The conformational equilibrium is fully described in terms of four geometrical parameters (PN, τN, PS, τS) and the equilibrium constant K. The present results indicate that, in general, the geometrical properties found in x‐ray studies of proline and hydroxyproline residues are well preserved in solution. Several novel features are encountered, however. It is demonstrated that the proline ring occurs in a practically 1:1 conformational equilibrium between well‐defined N‐ and S‐type forms. Introduction of an amide group at the C‐terminal end has no observable effect on this equilibrium, but the formation of a peptide bond at the imino nitrogen site results in a pronounced, but not exclusive, preference for an S‐type form which is roughly 1.1 kcal/mol more stable than its N‐type counterpart. The hydroxyproline ring system in neutral or acidic medium displays a pure N‐type state, but N‐acetylation results in the appearance of a minor (S‐type) conformation. Cyclic proline dipeptides similarly exist in a biased conformational equilibrium. The major form (77–88%) corresponds to the N‐type conformer observed in the solid state; the minor S‐form has not been observed before. In contrast, cyclic hydroxyproline dipeptides display complete conformational purity. Ranges of endocyclic torsion angles deduced for the various classes of pyrrolidine derivatives in solution are presented. Each torsion appears confined to a surprisingly narrow range, comprising about 4°–8° in most cases. In all, the proline ring is far less “floppy” than hitherto assumed.

Từ khóa


Tài liệu tham khảo

10.1016/0040-4020(80)80155-4

10.1002/mrc.1270150111

10.1002/recl.19790981206

10.1021/ja00856a039

10.1111/j.1399-3011.1971.tb01689.x

10.1021/ja00446a040

10.1021/ma60022a014

10.1021/ma60041a029

10.1002/bscb.19780870106

10.1063/1.1729860

10.1021/ja00901a059

10.1007/BF02158433

10.1021/ja01113a001

10.1016/0040-4020(68)89003-9

10.1021/ja00778a043

10.1002/ijch.198000059

10.1107/S0567740873002256

10.1080/00268976200100201

10.1080/00268976200100581

10.1080/00387017308065459

Inagaki F. Tasumi M.&Myazawa T.(1976)J. Chem. Soc. Perkin Trans. 2 167–172.

10.1016/0006-291X(74)90540-3

10.1111/j.1399-3011.1975.tb02453.x

10.1107/S056774087100503X

10.1002/bip.1979.360180509

Arnoux B., 1977, Cryst. Struct. Commun., 6, 29

10.1021/ja00434a016

10.1107/S0567740875006796

10.1021/ja00798a046

10.1021/ja00429a037

10.1002/mrc.1270130606

10.1002/bscb.19800890208

10.1002/mrc.1270070202

10.1111/j.1399-3011.1979.tb01955.x

10.1111/j.1399-3011.1975.tb02453.x

10.1002/bscb.19770860305

10.1021/jo01333a005

10.1021/ja00748a038

10.1021/ja00799a065

10.1107/S0567740871005594

10.1107/S0567740874006248

10.1524/zkri.1971.134.3-4.230

10.1021/ja00756a016

Benedetti E., 1975, Cryst. Struct. Commun., 4, 641

10.1107/S0567740876004640

10.1021/ja00819a044

10.1107/S0567740874005930

Aubry A., 1975, C. R. Acad. Sci., Ser. C, 280, 509

10.1107/S0567740876007139

Kayushina R. L., 1966, Sov. Phys. Crystallogr., 10, 698

10.1107/S0567740871002474

10.1107/S0567740874007096

Wolfe S. Rauk A. Tel L. M.&Csizmadia I. G.(1971)J. Chem. Soc. B 136–145.

10.1021/ar50051a003

Abraham R. J.&Kemp R. H.(1971)J. Chem. Soc. B 1240–1245.

10.1021/jo01327a050

Abraham R. J.&Thomas W. A.(1964)J. Chem. Soc. 3739–3748.

10.1002/bscb.19790880305

10.1002/bip.1975.360140602

10.1016/0005-2795(70)90257-6

10.1002/recl.19660851002