Mối quan hệ giữa ATOH1 và vi mô môi trường khối u ở bệnh nhân ung thư trực tràng có trạng thái ổn định vi thể khác nhau

Cancer Cell International - Tập 22 - Trang 1-17 - 2022
Weiming Mou1,2, Lingxuan Zhu1,2, Tao Yang1,2, Anqi Lin1, Qiong Lyu1, Linlang Guo3, Zaoqu Liu4, Quan Cheng5,6, Jian Zhang1, Peng Luo1
1Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
2The First Clinical Medical School, Southern Medical University, Guangzhou, China
3Department of Pathology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
4Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
5Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
6National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China

Tóm tắt

Ung thư ác tính tuyến ruột già (COAD) là một trong những loại khối u ác tính chính đang đe dọa sức khỏe con người hiện nay. Các chất ức chế điểm kiểm soát miễn dịch (ICIs) gần đây đã bắt đầu xuất hiện như một lựa chọn hiệu quả cho việc điều trị bệnh nhân COAD, nhưng không phải tất cả bệnh nhân đều có thể thu được lợi ích từ liệu pháp ICI. Các nghiên cứu trước đây đã đề xuất rằng ICIs có tác động lâm sàng đáng kể đối với bệnh nhân có sự không ổn định vi kính (MSI-H), trong khi ngược lại, các bệnh nhân có không ổn định vi kính ổn định/không ổn định vi kính thấp (MSS/MSI-L) đã cho thấy phản ứng hạn chế. Chúng tôi đã sử dụng ATAC-seq, RNA-seq và dữ liệu đột biến từ tập hợp ung thư di truyền Atlas ung thư (TCGA-COAD) để thực hiện phân tích khác biệt nhiều khu vực trên các mẫu COAD có trạng thái MSI khác nhau, sau đó tiếp tục sàng lọc các gen bằng cách kết hợp kết quả này với phân tích sống sót. Chúng tôi đã phân tích ảnh hưởng của các gen đã được sàng lọc lên môi trường vi mô khối u và khả năng miễn dịch của bệnh nhân COAD, và sau đó xác định ảnh hưởng của chúng đến hiệu quả của ICIs ở bệnh nhân COAD bằng cách sử dụng một loạt chỉ số dự đoán. Mười hai gen đã được sàng lọc trong tập hợp TCGA-COAD, và sau phân tích sống sót kết hợp, chúng tôi xác định ATOH1 có ảnh hưởng đáng kể. ATOH1 được đặc trưng bởi khả năng tiếp cận nhiễm sắc thể cao, biểu hiện cao và đột biến cao ở bệnh nhân COAD trong nhóm MSI-H. Bệnh nhân COAD có mức biểu hiện ATOH1 cao liên quan đến dự đoán tốt hơn, môi trường vi mô miễn dịch độc đáo và hiệu quả cao hơn trong điều trị ICI. Phân tích làm giàu cho thấy bệnh nhân COAD có mức biểu hiện ATOH1 cao thể hiện tăng cường đáng kể trong miễn dịch dịch thể và các con đường liên quan khác. Chúng tôi suy đoán rằng ATOH1 có thể ảnh hưởng đến hiệu quả của liệu pháp ICI ở bệnh nhân COAD bằng cách tác động lên môi trường vi mô miễn dịch và khả năng miễn dịch của khối u.

Từ khóa

#ung thư ác tính tuyến ruột già #ATOH1 #môi trường vi mô khối u #không ổn định vi kính #các chất ức chế điểm kiểm soát miễn dịch

Tài liệu tham khảo

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. Ganesh K, Stadler ZK, Cercek A, Mendelsohn RB, Shia J, Segal NH, et al. Immunotherapy in colorectal cancer: rationale, challenges and potential. Nat Rev Gastroenterol Hepatol. 2019;16:361–75. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20. Overman MJ, Bergamo F, McDermott RS, Aglietta M, Chen F, Gelsomino F, et al. Nivolumab in patients with DNA mismatch repair-deficient/microsatellite instability-high (dMMR/MSI-H) metastatic colorectal cancer (mCRC): long-term survival according to prior line of treatment from CheckMate-142. J Clin Oncol. 2018;36:554–554. Lenz H-JJ, Cutsem EV, Limon ML, Wong KY, Hendlisz A, Aglietta M, et al. Durable clinical benefit with nivolumab (NIVO) plus low-dose ipilimumab (IPI) as first-line therapy in microsatellite instability-high/mismatch repair deficient (MSI-H/dMMR) metastatic colorectal cancer (mCRC). Ann Oncol. 2018;29:714. Vilar E, Gruber SB. Microsatellite instability in colorectal cancer-the stable evidence. Nat Rev Clin Oncol. 2010;7:153–62. Boland CR, Goel A. Microsatellite instability in colorectal cancer. Gastroenterology. 2010;138:2073–2087.e3. Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol. 2006;7:335–46. Lin A, Zhang J, Luo P. Crosstalk between the MSI status and tumor microenvironment in colorectal cancer. Front Immunol. 2020;11:2039. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313:1960–4. Le DT, Durham JN, Smith KN, Wang H, Bartlett BR, Aulakh LK, et al. Mismatch-repair deficiency predicts response of solid tumors to PD-1 blockade. Science. NIH Public Access; 2017;357:409. Sun Y, Miao N, Sun T. Detect accessible chromatin using ATAC-sequencing, from principle to applications. Hereditas. 2019;156:29. Savio AJ, Daftary D, Dicks E, Buchanan DD, Parfrey PS, Young JP, et al. Promoter methylation of ITF2, but not APC, is associated with microsatellite instability in two populations of colorectal cancer patients. BMC Cancer. 2016;16:113. Renaud F, Vincent A, Mariette C, Crépin M, Stechly L, Truant S, et al. MUC5AC hypomethylation is a predictor of microsatellite instability independently of clinical factors associated with colorectal cancer. Int J Cancer. 2015;136:2811–21. Yamamoto H, Imai K. Microsatellite instability: an update. Arch Toxicol. 2015;89:899–921. Cajuso T, Hänninen UA, Kondelin J, Gylfe AE, Tanskanen T, Katainen R, et al. Exome sequencing reveals frequent inactivating mutations in ARID1A, ARID1B, ARID2 and ARID4A in microsatellite unstable colorectal cancer. Int J Cancer. 2014;135:611–23. Ropero S, Fraga MF, Ballestar E, Hamelin R, Yamamoto H, Boix-Chornet M, et al. A truncating mutation of HDAC2 in human cancers confers resistance to histone deacetylase inhibition. Nat Genet. 2006;38:566–9. Perrier A, Didelot A, Laurent-Puig P, Blons H, Garinet S. Epigenetic mechanisms of resistance to immune checkpoint inhibitors. Biomolecules. 2020;10:1061. Corces MR, Granja JM, Shams S, Louie BH, Seoane JA, Zhou W, et al. The chromatin accessibility landscape of primary human cancers. Science. 2018;362:eaav1898. Ren F, Zhao Q, Zhao M, Zhu S, Liu B, Bukhari I, et al. Immune infiltration profiling in gastric cancer and their clinical implications. Cancer Sci. 2021;112:3569. Zhang S, Zheng W, Jiang D, Xiong H, Liao G, Yang X, et al. Systematic chromatin accessibility analysis based on different immunological subtypes of clear cell renal cell carcinoma. Front Oncol. 2021;11:575425. Goldman MJ, Craft B, Hastie M, Repečka K, McDade F, Kamath A, et al. Visualizing and interpreting cancer genomics data via the Xena platform. Nat Biotechnol. 2020;38:675–8. Cancer Genome Atlas Research Network, Kandoth C, Schultz N, Cherniack AD, Akbani R, Liu Y, et al. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497:67–73. Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature. 2012;487:330–7. Mounir M, Lucchetta M, Silva TC, Olsen C, Bontempi G, Chen X, et al. New functionalities in the TCGAbiolinks package for the study and integration of cancer data from GDC and GTEx. PLoS Comput Biol. 2019;15:e1006701. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov N Y N. 2021;2:100141. Carlson M. org.Hs.eg.db: Genome wide annotation for Human. R package version 3.13.0. 2021.http://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. Jorissen RN, Lipton L, Gibbs P, Chapman M, Desai J, Jones IT, et al. DNA copy-number alterations underlie gene expression differences between microsatellite stable and unstable colorectal cancers. Clin Cancer Res Off J Am Assoc Cancer Res. 2008;14:8061–9. McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 2012;40:4288–97. Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016. Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinforma Oxf Engl. 2016;32:2847–9. Bioconductor Core Team and Bioconductor Package Maintainer. TxDb.Hsapiens.UCSC.hg38.knownGene: Annotation package for TxDb object(s). R package version 3.13.0. 2021. Yu G, Wang L-G, He Q-Y. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics. 2015;31:2382–3. Robinson JT, Thorvaldsdóttir H, Wenger AM, Zehir A, Mesirov JP. Variant review with the integrative genomics viewer. Cancer Res. 2017;77:e31-4. Mayakonda A, Lin D-C, Assenov Y, Plass C, Koeffler HP. Maftools: efficient and comprehensive analysis of somatic variants in cancer. Genome Res. 2018;28:1747–56. Dedeurwaerdere F, Claes KB, Van Dorpe J, Rottiers I, Van der Meulen J, Breyne J, et al. Comparison of microsatellite instability detection by immunohistochemistry and molecular techniques in colorectal and endometrial cancer. Sci Rep. Nature Publishing Group; 2021;11:12880. Zeng D, Ye Z, Shen R, Yu G, Wu J, Xiong Y, et al. IOBR: multi-omics immuno-oncology biological research to decode tumor microenvironment and signatures. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.687975. Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC, et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013;39:782–95. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Yang T-HO, et al. The immune landscape of cancer. Immunity. 2018;48:812. Hao Z, Lv D, Ge Y, Shi J, Weijers D, Yu G, et al. RIdeogram: drawing SVG graphics to visualize and map genome-wide data on the idiograms. PeerJ Comput Sci. PeerJ Inc.; 2020;6:e251. Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell. 2015;160:48–61. Chong W, Shang L, Liu J, Fang Z, Du F, Wu H, et al. m6A regulator-based methylation modification patterns characterized by distinct tumor microenvironment immune profiles in colon cancer. Theranostics. 2021;11:2201. Wang S, He Z, Wang X, Li H, Liu X-S. Antigen presentation and tumor immunogenicity in cancer immunotherapy response prediction. eLife. 2019;8:e49020. Davoli T, Uno H, Wooten EC, Elledge SJ. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science. 2017;355:eaaf8399. Zaravinos A, Roufas C, Nagara M, de Lucas Moreno B, Oblovatskaya M, Efstathiades C, et al. Cytolytic activity correlates with the mutational burden and deregulated expression of immune checkpoints in colorectal cancer. J Exp Clin Cancer Res CR. 2019;38:364. Yu G. enrichplot: Visualization of Functional Enrichment Result. R package version 1.12.2. https://yulab-smu.top/biomedical-knowledge-mining-book/ Lin A, Qi C, Wei T, Li M, Cheng Q, Liu Z, et al. CAMOIP: a web server for comprehensive analysis on multi-omics of immunotherapy in pan-cancer. Brief Bioinform. 2022;23(3):bbac129 Liu C-J, Hu F-F, Xia M-X, Han L, Zhang Q, Guo A-Y. GSCALite: a web server for gene set cancer analysis. Bioinforma Oxf Engl. 2018;34:3771–2. Kassambara A. ggpubr: “ggplot2” Based Publication Ready Plots. R package version 0.4.0.. 2020. https://CRAN.R-project.org/package=ggpubr Liu Y, Sethi NS, Hinoue T, Schneider BG, Cherniack AD, Sanchez-Vega F, et al. Comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell. 2018;33:721. Snyder A, Nathanson T, Funt SA, Ahuja A, Buros Novik J, Hellmann MD, et al. Contribution of systemic and somatic factors to clinical response and resistance to PD-L1 blockade in urothelial cancer: an exploratory multi-omic analysis. PLoS Med. 2017;14:e1002309. Samstein RM, Lee C-H, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51:202–6. Bossuyt W, Kazanjian A, De Geest N, Van Kelst S, De Hertogh G, Geboes K, et al. Atonal homolog 1 is a tumor suppressor gene. PLoS Biol. 2009;7:e39. Franzin R, Netti GS, Spadaccino F, Porta C, Gesualdo L, Stallone G, et al. The use of immune checkpoint inhibitors in oncology and the occurrence of AKI: where do we stand? Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.574271. Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature. NIH Public Access; 2020;577:549. Fre S, Pallavi SK, Huyghe M, Laé M, Janssen K-P, Robine S, et al. Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine. Proc Natl Acad Sci USA. 2009;106:6309. Tyagi A, Sharma AK, Damodaran C. A review on notch signaling and colorectal cancer. Cells. 2020;9:1549. Daud AI, Loo K, Pauli ML, Sanchez-Rodriguez R, Sandoval PM, Taravati K, et al. Tumor immune profiling predicts response to anti–PD-1 therapy in human melanoma. J Clin Invest. 2016;126:3447. Powles T, Eder JP, Fine GD, Braiteh FS, Loriot Y, Cruz C, et al. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature. 2014;515:558–62. El-Khoueiry AB, Sangro B, Yau T, Crocenzi TS, Kudo M, Hsu C, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet Lond Engl. 2017;389:2492–502. Yuan J, Zhou J, Dong Z, Tandon S, Kuk D, Panageas KS, et al. Pretreatment serum VEGF is associated with clinical response and overall survival in advanced melanoma patients treated with ipilimumab. Cancer Immunol Res. 2014;2:127–32. Khan KA, Kerbel RS. Improving immunotherapy outcomes with anti-angiogenic treatments and vice versa. Nat Rev Clin Oncol. 2018;15:310–24. Kim K, Kim HS, Kim JY, Jung H, Sun J-M, Ahn JS, et al. Predicting clinical benefit of immunotherapy by antigenic or functional mutations affecting tumour immunogenicity. Nat Commun. 2020;11:951. Charles J, Mouret S, Challende I, Leccia M-T, De Fraipont F, Perez S, et al. T-cell receptor diversity as a prognostic biomarker in melanoma patients. Pigment Cell Melanoma Res. 2020;33:612–24.