Relationship Between MiRKAT and Coefficient of Determination in Similarity Matrix Regression
Tóm tắt
Từ khóa
Tài liệu tham khảo
Turnbaugh, 2009, A core gut microbiome in obese and lean twins, Nature, 457, 480, 10.1038/nature07540
Qin, 2012, A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature, 490, 55, 10.1038/nature11450
Louis, 2014, The gut microbiota, bacterial metabolites and colorectal cancer, Nat. Rev. Microbiol., 12, 661, 10.1038/nrmicro3344
Morgan, 2015, Associations between host gene expression, the mucosal microbiome, and clinical outcome in the pelvic pouch of patients with inflammatory bowel disease, Genome Biol., 16, 67, 10.1186/s13059-015-0637-x
Mitchell, 2017, Vaginal microbiota and genitourinary menopausal symptoms: A cross-sectional analysis, Menopause, 24, 1160, 10.1097/GME.0000000000000904
Cho, 2012, The human microbiome: at the interface of health and disease, Nat. Rev. Genet., 13, 260, 10.1038/nrg3182
Blekhman, 2015, Host genetic variation impacts microbiome composition across human body sites, Genome Biol., 16, 191, 10.1186/s13059-015-0759-1
Chen, 2012, Associating microbiome composition with environmental covariates using generalized UniFrac distances, Bioinformatics, 28, 2106, 10.1093/bioinformatics/bts342
Zhao, 2015, Testing in microbiome-profiling studies with MiRKAT, the microbiome regression-based kernel association test, Am. J. Hum. Genet., 96, 797, 10.1016/j.ajhg.2015.04.003
Koh, 2018, An adaptive microbiome α-diversity-based association analysis method, Sci. Rep., 8, 1, 10.1038/s41598-018-36355-7
Wu, 2016, An adaptive association test for microbiome data, Genome Med., 8, 56, 10.1186/s13073-016-0302-3
Tang, 2016, PERMANOVA-S: Association test for microbial community composition that accommodates confounders and multiple distances, Bioinformatics, 32, 2618, 10.1093/bioinformatics/btw311
Tang, 2017, A general framework for association analysis of microbial communities on a taxonomic tree, Bioinformatics, 33, 1278, 10.1093/bioinformatics/btw804
Plantinga, 2017, MiRKAT-S: A community-level test of association between the microbiota and survival times, Microbiome, 5, 17, 10.1186/s40168-017-0239-9
Zhan, 2017, A small-sample multivariate kernel machine test for microbiome association studies, Genet. Epidemiol., 41, 210, 10.1002/gepi.22030
Zhan, 2017, A fast small-sample kernel independence test for microbiome community-level association analysis, Biometrics, 73, 1453, 10.1111/biom.12684
Koh, 2017, A powerful microbiome-based association test and a microbial taxa discovery framework for comprehensive association mapping, Microbiome, 5, 45, 10.1186/s40168-017-0262-x
Koh, H., Livanos, A.E., Blaser, M.J., and Li, H. (2018). A highly adaptive microbiome-based association test for survival traits. BMC Genom., 19.
Bray, 1957, An ordination of the upland forest communities of southern Wisconsin, Ecol. Monogr., 27, 325, 10.2307/1942268
Zhang, 2017, A multivariate distance-based analytic framework for microbial interdependence association test in longitudinal study, Genet. Epidemiol., 41, 769, 10.1002/gepi.22065
Zhan, 2018, A small-sample kernel association test for correlated data with application to microbiome association studies, Genet. Epidemiol., 42, 772, 10.1002/gepi.22160