Relationship Between Aldosterone and Parathyroid Hormone, and the Effect of Angiotensin and Aldosterone Inhibition on Bone Health

Springer Science and Business Media LLC - Tập 13 - Trang 194-205 - 2015
Lise Sofie Bislev1, Tanja Sikjær1, Lars Rolighed2, Lars Rejnmark1
1Department of Endocrinology and Internal Medicine, Tage Hansens Gade 2, Aarhus University Hospital, Aarhus C, Denmark
2Department of Surgery P, Breast and Endocrine Section, Tage Hansens Gade 2, Aarhus University Hospital, Aarhus C, Denmark

Tóm tắt

Emerging evidence suggests a stimulating effect of parathyroid hormone (PTH) on the renin–angiotensin–aldosterone system (RAAS). In primary hyperparathyroidism, chronic-elevated PTH levels seem to stimulate the RAAS which may explain the increased risk of cardiovascular disease (CVD). In addition to increased PTH levels, low vitamin D levels may also directly increase risk of CVD, as vitamin D, itself, has been shown to inhibit the RAAS. Angiotensin II, aldosterone and cortisol all negatively impact bone health. Hyperaldosteronism is associated with a reversible secondary hyperparathyroidism due to increased renal calcium excretion. Moreover, the angiotensin II receptor is expressed by human parathyroid tissue, and angiotensin may therefore directly stimulates PTH secretion. An increased bone loss is found in patients with hyperaldosteronism. The angiotensin II receptor seems main responsible for the RAAS-initiated bone loss due to a receptor activator of NF-κB ligand-mediated activation of the osteoclasts. Available data suggest a reduced fracture rate and increased bone mineral density in patients treated with angiotensin II receptor blockers, whereas treatment with angiotensin-converting enzyme inhibitors causes the opposite effects. Mineralocorticoid receptor antagonists seem to be beneficial to bone in patients with hyperaldosteronism, but it is unknown whether this also applies to other individuals. Further long-term studies are needed to clarify the effect of RAAS inhibitors on bone health. RAAS inhibitors, are widely prescribed worldwide and beneficial as well as harmful effects may have large impact on bone health in the general population.

Tài liệu tham khảo

Brown JM, Williams JS, Luther JM, et al. Human interventions to characterize novel relationships between the renin-angiotensin-aldosterone system and parathyroid hormone. Hypertension. 2014;63:273–80. doi:10.1161/HYPERTENSIONAHA.113.01910. Grant FD, Mandel SJ, Brown EM, et al. Interrelationships between the renin-angiotensin-aldosterone and calcium homeostatic systems. J Clin Endocrinol Metab. 1992;75:988–92. Tomaschitz A, Pilz S. Interplay between sodium and calcium regulatory hormones: a clinically relevant research field. Hypertension. 2014;63:212–4. doi:10.1161/HYPERTENSIONAHA.113.02253. Nilsson IL, Aberg J, Rastad J, Lind L. Left ventricular systolic and diastolic function and exercise testing in primary hyperparathyroidism-effects of parathyroidectomy. Surgery. 2000;128:895–902. Piovesan A, Molineri N, Casasso F, et al. Left ventricular hypertrophy in primary hyperparathyroidism. Effects of successful parathyroidectomy. Clin Endocrinol (Oxf). 1999;50:321–8. Vestergaard P, Mollerup CL, Frøkjaer VG, et al. Cardiovascular events before and after surgery for primary hyperparathyroidism. World J Surg. 2003;27:216–22. Rosa J, Raska I, Wichterle D, et al. Pulse wave velocity in primary hyperparathyroidism and effect of surgical therapy. Hypertens Res. 2011;34:296–300. doi:10.1038/hr.2010.232. Sprini D, Rini GB, Di Stefano L, et al. Correlation between osteoporosis and cardiovascular disease. Clin cases Miner bone Metab. 2014;1:117–9. Bolland MJ, Grey A, Gamble GD, Reid IR. The effect of vitamin D supplementation on skeletal, vascular, or cancer outcomes: a trial sequential meta-analysis. Lancet Diabetes Endocrinol. 2014;2:307–20. doi:10.1016/S2213-8587(13)70212-2. Brown J, de Boer IH, Robinson-Cohen C, et al. Aldosterone, parathyroid hormone, and the use of renin-angiotensin-aldosterone system inhibitors: the multi-ethnic study of atherosclerosis. J Clin Endocrinol Metab. 2014;. doi:10.1210/jc.2014-3949. Pilz S, Tomaschitz A, Drechsler C, et al. Parathyroid hormone level is associated with mortality and cardiovascular events in patients undergoing coronary angiography. Eur Heart J. 2010;31:1591–8. doi:10.1093/eurheartj/ehq109. Lasco A, Catalano A, Morabito N, et al. Adrenal effects of teriparatide in the treatment of severe postmenopausal osteoporosis. Osteoporos Int. 2011;22:299–303. doi:10.1007/s00198-010-1222-5. Maniero C, Fassina A, Guzzardo V, et al. Primary hyperparathyroidism with concurrent primary aldosteronism. Hypertension. 2011;58:341–6. doi:10.1161/HYPERTENSIONAHA.111.173948. Mazzocchi G, Aragona F, Malendowicz LK, Nussdorfer GG. PTH and PTH-related peptide enhance steroid secretion from human adrenocortical cells. Am J Physiol Endocrinol Metab. 2001;280:E209–13. Hulter H, Melby JC, Peterson JC, Cooke CR. Chronic continuous PTH infusion results in hypertension in normal subjects. J Clin Hypertens. 1986;2:360–70. Isales CM, Barrett PQ, Brines M, et al. Parathyroid hormone modulates angiotensin II-induced aldosterone secretion from adrenal glomerulosa cell. Endocr Soc. 1991;129:489–95. Nainby-Luxmoore JC, Langford HG, Nelson NC, et al. A case-comparison study of hypertension and hyperparathyroidism. J Clin Endocrinol Metab. 1982;55:303–6. Letizia C, Ferrari P, Cotesta D, et al. Ambulatory monitoring of blood pressure (AMBP) in patients with primary hyperparathyroidism. J Hum Hypertens. 2005;19:901–6. Nilsson I-L, Yin L, Lundgren E, et al. Clinical presentation of primary hyperparathyroidism in Europe–nationwide cohort analysis on mortality from nonmalignant causes. J Bone Miner Res. 2002;17(Suppl 2):N68–74. Yu N, Donnan PT, Leese GP. A record linkage study of outcomes in patients with mild primary hyperparathyroidism: the Parathyroid Epidemiology and Audit Research Study (PEARS). Clin Endocrinol (Oxf). 2011;75:169–76. doi:10.1111/j.1365-2265.2010.03958.x. Hedbäck G, Odén A. Increased risk of death from primary hyperparathyroidism–an update. Eur J Clin Invest. 1998;28:271–6. Silverberg SJ, Clarke BL, Peacock M, et al. Current issues in the presentation of asymptomatic primary hyperparathyroidism: proceedings of the Fourth International Workshop. 2015;99:3580–3594. doi:10.1210/jc.2014-1415. Brunaud L, Germain A, Zarnegar R, et al. Serum aldosterone is correlated positively to parathyroid hormone (PTH) levels in patients with primary hyperparathyroidism. Surgery. 2009;146:1035–41. doi:10.1016/j.surg.2009.09.041. Gianotti L, Tassone F, Pia A, et al. May an altered hypothalamo-pituitary-adrenal axis contribute to cortical bone damage in primary hyperparathyroidism? Calcif Tissue Int. 2009;84:425–9. doi:10.1007/s00223-009-9245-7. Jespersen B, Pedersen EB, Charles P, et al. Elevated angiotensin II and vasopressin in primary hyperparathyroidism. Angiotensin II infusion studies before and after removal of the parathyroid adenoma. Acta Endocrinol (Copenh). 1989;120:362–8. Gavras I, Hatinoglou S, Benetos A, Gavras H. Calcium stimulates vasopressin release. J Hypertens. 1986;4:451–4. Vimaleswaran KS, Cavadino A, Berry DJ, et al. Association of vitamin D status with arterial blood pressure and hypertension risk: a mendelian randomisation study. Lancet Diabetes Endocrinol. 2014;2:719–29. doi:10.1016/S2213-8587(14)70113-5. Krause R, Bühring M, Hopfenmüller W, et al. Ultraviolet B and blood pressure. Lancet. 1998;352:709–10. Pfeifer M, Begerow B, Minne HW, et al. Effects of a short-term vitamin D(3) and calcium supplementation on blood pressure and parathyroid hormone levels in elderly women. J Clin Endocrinol Metab. 2001;86:1633–7. Sugden JA, Davies JI, Witham MD, et al. Vitamin D improves endothelial function in patients with Type 2 diabetes mellitus and low vitamin D levels. Diabet Med. 2008;25:320–5. doi:10.1111/j.1464-5491.2007.02360.x. Pittas AG, Chung M, Trikalinos T, et al. Systematic review: vitamin D and cardiometabolic outcomes. Ann Intern Med. 2010;152:307–14. doi:10.7326/0003-4819-152-5-201003020-00009. Li YC, Qiao G, Uskokovic M, et al. Vitamin D: a negative endocrine regulator of the renin-angiotensin system and blood pressure. J Steroid Biochem Mol Biol. 2004;89–90:387–92. Tomaschitz A, Pilz S, Ritz E, et al. Independent association between 1,25-dihydroxyvitamin D, 25-hydroxyvitamin D and the renin-angiotensin system. The Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Clin Chim Acta. 2010;411:1354–60. doi:10.1016/j.cca.2010.05.037. Forman JP, Williams JS, Fisher NDL. Plasma 25-hydroxyvitamin D and regulation of the renin-angiotensin system in humans. Hypertension. 2010;55:1283–8. doi:10.1161/HYPERTENSIONAHA.109.148619. Vaidya A, Sun B, Larson C, et al. Vitamin D3 therapy corrects the tissue sensitivity to angiotensin ii akin to the action of a converting enzyme inhibitor in obese hypertensives: an interventional study. J Clin Endocrinol Metab. 2012;97:2456–65. doi:10.1210/jc.2012-1156. Funder JW, Carey RM, Fardella C, et al. Case detection, diagnosis, and treatment of patients with primary aldosteronism: an endocrine society clinical practice guideline. J Clin Endocrinol Metab. 2008;93:3266–81. doi:10.1210/jc.2008-0104. Milliez P, Girerd X, Plouin P-F, et al. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol. 2005;45:1243–8. Salcuni AS, Palmieri S, Carnevale V, et al. Bone involvement in aldosteronism. J Bone Miner Res. 2012;27:2217–22. doi:10.1002/jbmr.1660. Chhokar VS, Sun Y, Bhattacharya SK, et al. Hyperparathyroidism and the calcium paradox of aldosteronism. Circulation. 2005;111:871–8. Law PH, Sun Y, Bhattacharya SK, et al. Diuretics and bone loss in rats with aldosteronism. J Am Coll Cardiol. 2005;46:142–6. Chhokar VS, Sun Y, Bhattacharya SK, et al. Loss of bone minerals and strength in rats with aldosteronism. Am J Physiol Heart Circ Physiol. 2004;287:H2023–6. Runyan AL, Chhokar VS, Sun Y, et al. Bone loss in rats with aldosteronism. Am J Med Sci. 2005;330:1–7. Ceccoli L, Ronconi V, Giovannini L, et al. Bone health and aldosterone excess. Osteoporos Int. 2013;24:2801–7. Pilz S, Kienreich K, Drechsler C, et al. Hyperparathyroidism in patients with primary aldosteronism: cross-sectional and interventional data from the GECOH study. J Clin Endocrinol Metab. 2012;97:75–9. doi:10.1210/jc.2011-2183. Rossi E, Sani C, Perazzoli F, et al. Alterations of the calcium metabolism and of parathyroid function in primary aldosteronism and their revertal by spironolactone or by surgical removal of aldosterone-producing adenomas. Am J Hypertens. 1995;7061:884–93. Maniero C, Fassina A, Seccia TM, et al. Mild hyperparathyroidism: a novel surgically correctable feature of primary aldosteronism. J Hypertens. 2012;30:390–5. doi:10.1097/HJH.0b013e32834f0451. Resnick LM, Laragh JH. Calcium metabolism and parathyroid function in primary aldosteronism. Am J Med. 1985;78:385–90. Rossi GP, Ragazzo F, Seccia TM, et al. Hyperparathyroidism can be useful in the identification of primary aldosteronism due to aldosterone-producing adenoma. Hypertension. 2012;60:431–6. doi:10.1161/HYPERTENSIONAHA.112.195891. Giacchetti G, Ronconi V, Lucarelli G, et al. Analysis of screening and confirmatory tests in the diagnosis of primary aldosteronism: need for a standardized protocol. J Hypertens. 2006;24:737–45. Blumenfeld JD, Sealey JE, Schlussel Y, et al. Diagnosis and treatment of primary hyperaldosteronism. Ann Intern Med. 1994;121:877–85. Afghani A. Hypertension and bone loss. Nova Biomedica/Nova Science Publishers; 2011. http://site.ebrary.com.ez.statsbiblioteket.dk:2048/lib/stats/reader.action?docID=10671131. Khouzam RN, Dishmon DA, Farah V, et al. Secondary hyperparathyroidism in patients with untreated and treated congestive heart failure. Am J Med Sci. 2006;331:30–4. Mateus-Hamdan L, Beauchet O, Bouvard B, et al. High parathyroid hormone, but not low vitamin D concentrations, expose elderly inpatients to hypertension. Geriatr Gerontol Int. 2013;13:783–91. doi:10.1111/j.1447-0594.2012.00945.x. Hatton R, Stimpel M, Chambers TJ. Angiotensin II is generated from angiotensin I by bone cells and stimulates osteoclastic bone resorption in vitro. J Endocrinol. 1997;152:5–10. Garcia P, Schwenzer S, Slotta JE, et al. Inhibition of angiotensin-converting enzyme stimulates fracture healing and periosteal callus formation—role of a local renin-angiotensin system. Br J Pharmacol. 2010;159:1672–80. doi:10.1111/j.1476-5381.2010.00651.x. Shimizu H, Nakagami H, Osako MK, et al. Angiotensin II accelerates osteoporosis by activating osteoclasts. FASEB J. 2008;22:2465–75. doi:10.1096/fj.07-098954. Kaneko K, Ito M, Fumoto T, et al. Physiological function of the angiotensin AT1a receptor in bone remodeling. J Bone Miner Res. 2011;26:2959–66. doi:10.1002/jbmr.501. Asaba Y, Ito M, Fumoto T, et al. Activation of renin-angiotensin system induces osteoporosis independently of hypertension. J Bone Miner Res. 2009;24:241–50. doi:10.1359/jbmr.081006. Hagiwara H, Hiruma Y, Inoue A, et al. Deceleration by angiotensin II of the differentiation and bone formation of rat calvarial osteoblastic cells. J Endocrinol. 1998;156:543–50. Hiruma Y, Inoue A, Hirose S, Hagiwara H. Angiotensin II stimulates the proliferation of osteoblast-rich populations of cells from rat calvariae. Biochem Biophys Res Commun. 1997;230:176–8. Lamparter S, Kling L, Schrader M, et al. Effects of angiotensin II on bone cells in vitro. J Cell Physiol. 1998;175:89–98. Vestergaard P, Rejnmark L, Mosekilde L. Hypertension is a risk factor for fractures. Calcif Tissue Int. 2009;84:103–11. Cappuccio FP, Meilahn E, Zmuda JM, Cauley JA. High blood pressure and bone-mineral loss in elderly white women: a prospective study. Study of Osteoporotic Fractures Research Group. Lancet. 1999;354:971–5. Tsuda K, Nishio I, Masuyama Y. Bone mineral density in women with essential hypertension. Am J Hypertens. 2001;14:704–7. Koiwa F, Komukai D, Hirose M, et al. Influence of renin-angiotensin system on serum parathyroid hormone levels in uremic patients. Clin Exp Nephrol. 2012;16:130–5. doi:10.1007/s10157-011-0534-x. Ma YF, Stimpel M, Liang H, et al. Impact of antihypertensive therapy on the skeleton: effects of moexipril and hydrochlorothiazide on osteopenia in spontaneously hypertensive ovariectomized rats. J Endocrinol. 1997;154:467–74. Shimizu H, Nakagami H, Osako MK, et al. Prevention of osteoporosis by angiotensin-converting enzyme inhibitor in spontaneous hypertensive rats. Hypertens Res. 2009;32:786–90. doi:10.1038/hr.2009.99. Rajkumar DSR, Faitelson AV, Gudyrev OS, et al. Comparative evaluation of enalapril and losartan in pharmacological correction of experimental osteoporosis and fractures of its background. J Osteoporos. 2013. doi:10.1155/2013/325693. Kang KY, Kang Y, Kim M, et al. The effects of antihypertensive drugs on bone mineral density in ovariectomized mice. J Korean Med Sci. 2013;28:1139–44. doi:10.3346/jkms.2013.28.8.1139. Mathai ML, Naik S, Sinclair AJ, et al. Selective reduction in body fat mass and plasma leptin induced by angiotensin-converting enzyme inhibition in rats. Int J Obes (Lond). 2008;32:1576–84. doi:10.1038/ijo.2008.126. Broulík PD, Tesař V, Zima T, Jirsa M. Impact of antihypertensive therapy on the skeleton: effects of enalapril and AT1 receptor antagonist losartan in female rats. Physiol Res. 2001;50:353–8. Ma L, Ji JL, Ji H, et al. Telmisartan alleviates rosiglitazone-induced bone loss in ovariectomized spontaneous hypertensive rats. Bone. 2010;47:5–11. doi:10.1016/j.bone.2010.03.016. Donmez BO, Ozdemir S, Sarikanat M, et al. Effect of angiotensin II type 1 receptor blocker on osteoporotic rat femurs. Pharmacol Rep. 2012;64:878–88. Araújo AA, Souza TO, Moura LM, et al. Effect of telmisartan on levels of IL-1, TNF-α, down-regulated COX-2, MMP-2, MMP-9 and RANKL/RANK in an experimental periodontitis model. J Clin Periodontol. 2013;40:1104–11. doi:10.1111/jcpe.12160. Izu Y, Mizoguchi F, Kawamata A, et al. Angiotensin II type 2 receptor blockade increases bone mass. J Biol Chem. 2009;284:4857–64. doi:10.1074/jbc.M807610200. Araújo AA, Lopes De Souza G, Souza TO, et al. Olmesartan decreases IL-1β and TNF-α levels; Downregulates MMP-2, MMP-9, COX-2, and RANKL; and upregulates OPG in experimental periodontitis. Naunyn Schmiedebergs Arch Pharmacol. 2013;386:875–84. doi:10.1007/s00210-013-0886-8. Rejnmark L, Vestergaard P, Mosekilde L. Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case-control study. J Hypertens. 2006;24:581–9. Choi HJ, Park C, Lee Y-K, et al. Risk of fractures in subjects with antihypertensive medications: a nationwide claim study. Int J Cardiol. 2015;184:62–7. doi:10.1016/j.ijcard.2015.01.072. Solomon DH, Mogun H, Garneau K, Fischer MA. Risk of fractures in older adults using antihypertensive medications. J Bone Miner Res. 2011;26:1561–7. doi:10.1002/jbmr.356. Butt DA, Mamdani M, Gomes T, et al. Risk of osteoporotic fractures with angiotensin ii receptor blockers versus angiotensin-converting enzyme inhibitors in hypertensive community-dwelling elderly. J Bone Miner Res. 2014;29:2483–8. doi:10.1002/jbmr.2271. Lynn H, Kwok T, Wong SYS, et al. Angiotensin converting enzyme inhibitor use is associated with higher bone mineral density in elderly Chinese. Bone. 2006;38:584–8. Kwok T, Leung J, Zhang YF, et al. Does the use of ACE inhibitors or angiotensin receptor blockers affect bone loss in older men? Osteoporos Int. 2012;23:2159–67. doi:10.1007/s00198-011-1831-7. Zhang Y-F, Qin L, Leung P-C, Kwok TCY. The effect of angiotensin-converting enzyme inhibitor use on bone loss in elderly Chinese. J Bone Miner Metab. 2012;30:666–73. doi:10.1007/s00774-012-0363-3. Pérez-Castrillón JL, Silva JJ, Justo I, et al. Effect of quinapril, quinapril-hydrochlorothiazide, and enalapril on the bone mass of hypertensive subjects: relationship with angiotensin converting enzyme polymorphisms. Am J Hypertens. 2003;16:453–9. Pérez-Castrillón JL, Justo I, Silva J, et al. Relationship between bone mineral density and angiotensin converting enzyme polymorphism in hypertensive postmenopausal women. Am J Hypertens. 2003;16:233–5. Beavan S, Horner A, Bord S, et al. Colocalization of glucocorticoid and mineralocorticoid receptors in human bone. J Bone Miner Res. 2001;16:1496–504. Fumoto T, Ishii K-A, Ito M, et al. Mineralocorticoid receptor function in bone metabolism and its role in glucocorticoid-induced osteopenia. Biochem Biophys Res Commun. 2014;447:407–12. doi:10.1016/j.bbrc.2014.03.149. Struthers A, Krum H, Williams GH. A comparison of the aldosterone-blocking agents eplerenone and spironolactone. Clin Cardiol. 2008;31:153–8. doi:10.1002/clc.20324. Grauballe MCB, Bentzen BH, Björnsson M, et al. The effect of spironolactone on experimental periodontitis in rats. J Periodontal Res. 2005;40:212–7. Carbone LD, Cross JD, Raza SH, et al. Fracture risk in men with congestive heart failure risk reduction with spironolactone. J Am Coll Cardiol. 2008;52:135–8. doi:10.1016/j.jacc.2008.03.039. Moghetti P, Castello R, Zamberlan N, et al. Spironolactone, but not flutamide, administration prevents bone loss in hyperandrogenic women treated with gonadotropin-releasing hormone agonist. J Clin Endocrinol Metab. 1998;84:1250–4. Prezelj J, Kocijancic A. Antiandrogen treatment with spironolactone and linestrenol decreases bone mineral density in eumenorrhoeic women with androgen excess. Horm Metab Res. 1994;26:46–8. Gregoriou O, Bakas P, Konidaris S, et al. The effect of combined oral contraception with or without spironolactone on bone mineral density of hyperandrogenic women. Gynecol Endocrinol. 2000;14:369–73. Bomback AS, Klemmer PJ. The incidence and implications of aldosterone breakthrough. Nat Clin Pract Nephrol. 2007;3:486–92. Cohn JN, Anand IS, Latini R, et al. Sustained reduction of aldosterone in response to the angiotensin receptor blocker valsartan in patients with chronic heart failure: results from the Valsartan Heart Failure Trial. Circulation. 2003;108:1306–9. Gonçalves-Zillo TO, Pugliese LS, Sales VMT, et al. Increased bone loss and amount of osteoclasts in kinin B1 receptor knockout mice. J Clin Periodontol. 2013;40:653–60. doi:10.1111/jcpe.12097.