Relation between the stability of dental implants and two biological markers during the healing period: a prospective clinical study

Springer Science and Business Media LLC - Tập 2 - Trang 1-11 - 2016
Choknapa Tirachaimongkol1, Peraphan Pothacharoen2, Peter A. Reichart3, Pathawee Khongkhunthian1
1Center of Excellence for Dental Implantology, Faculty of Dentistry, Chiang Mai University, A. Muang, Thailand
2Department of Biochemistry, Faculty of Medicine, Thailand Excellence Center for Tissue Engineering and Stem Cells, Chiang Mai, Thailand
3Department of Oral Medicine, Dental Radiology and Oral Surgery, Center for Dental, Oral and Maxillary Medicine, Charite – University of Medicine, Berlin, Germany

Tóm tắt

The purposes of this study were to examine the correlation between the stability of dental implants and bone formation markers during the healing period and to monitor the stability of dental implants using the resonance frequency analysis (RFA) method. The null hypothesis of the study is no correlation between the stability of dental implant and bone formation markers. The study is a prospective clinical study during the 3-month healing period of implant. At implant placement (PW Plus, Nakhon Pathom, Thailand) and after 1, 2, 3, 4, 6, 8, 10, and 12 weeks, RFA assessments were performed and gingival (GCF)/peri-implant crevicular fluids (PICF) were collected from ten patients. The level of osteocalcin (OC) was measured by using ELISA kits, and the level of alkaline phosphatase (ALP) activity was measured by colorimetric analysis. Repeated measures analysis of variance, the Friedman test, the Mann-Whitney U test, and the Pearson correlation were performed for data analysis. There was a statistical decrease in the mean implant stability quotient (ISQ) values between 1 and 3 weeks (P < 0.05). The ISQ values recovered to the initial values at 4 weeks. There was no statistical difference in the ALP level at each measurement, while there was a statistical increase in the OC level at 6, 8, 10, and 12 weeks when compared with 1 week (P < 0.05). There was a significant correlation between ALP levels and ISQ values (r = 0.226, P < 0.05). There was a statistically significant correlation between OC levels and ISQ values at 1–12 weeks (r = 0.245, P < 0.05). The ISQ values were weakly correlated with both ALP and OC. The three-thread-design implant showed a high stability through healing period.

Tài liệu tham khảo

Albrektsson T, Brånemark PI, Hansson HA, Lindström J. Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. Acta Orthop Scand. 1981;52:155–70. Khongkhunthian P. Implant features. In: Khongkhunthian P, editor. PW Plus Thai Dental Implant. Bangkok: STZ Mospace design; 2015. p. 12. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR, Burgess T, Elliott R, Colombero A, Elliott G, Scully S, Hsu H, Sullivan J, Hawkins N, Davy E, Capparelli C, Eli A, Qian YX, Kaufman S, Sarosi I, Shalhoub V, Senaldi G, Guo F, Delaney. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell. 1998;93:165–76. Martin TJ, Sims NA. Osteoclast-derived activity in the coupling of bone formation to resorption. Trends Mol Med. 2005;11:76–81. Davies JE. Understanding peri-implant endosseous healing. J Dent Educ. 2003;67:932–49. Davies JE. Mechanisms of endosseous integration. Int J Prosthodont. 1998;11:391–401. Celeste AJ, Rosen V, Buecker JL, Kriz R, Wang EA, Wozney JM. Isolation of the human gene for bone gla protein utilizing mouse and rat cDNA clones. EMBO J. 1986;5:1885–90. Junqueira PA, da Fonseca AM, Bagnoli VR, Giannella-Netot D, Mangueira CL, Coimbra CN, Pinotti JA. Comparison of bone remodeling indicators in climacteric women. Int J Fertil Womens Med. 2002;47:174–81. Ohishi T, Takahashi M, Kushida K, Hoshino H, Tsuchikawa T, Naitoh K, Inoue T. Changes of biochemical markers during fracture healing. Arch Orthop Trauma Surg. 1998;118:126–30. Taniguchi T, Matsumoto, T, Shindo H. Changes of serum levels of osteocalcin, alkaline phosphatase, IGF-I and IGF-binding protein-3 during fracture healing. Injury. 2003;34:477–479. Sharma U, Pal D, Prasad R. Alkaline phosphatase: an overview. Indian Journal of Clinical Biochemistry. 2014;29:269–278. Cehreli MC, Karasoy D, Akca K, Eckert SE. Meta-analysis of methods used to assess implant stability. Int J Oral Maxillofac Implants. 2009;24:1015–32. Meredith N, Shagaldi F, Alleyne D, Sennerby L, Cawley P. The application of resonance frequency measurements to study the stability of titanium implants during healing in the rabbit tibia. Clin Oral Implants Res. 1997;8:234–43. Bischof M, Nedir R, Szmukler-Moncler S, Bernard JP, Samson J. Implant stability measurement of delayed and immediately loaded implants during healing. Clin Oral Implants Res. 2004;5:529–39. Sim CPC, Lang NP. Factors influencing resonance frequency analysis assessed by Osstell mentor during implant tissue integration: I. Instrument positioning, bone structure, implant length. Clin Oral Implants Res. 2010;21:598–604. Tallarico M, Vaccarella A, Marzi GC, Alviani A, Campana V. A prospective case-control clinical trial comparing 1- and 2-stage Nobel Biocare TiUnite implants: resonance frequency analysis assessed by Osstell Mentor during integration. Quintessence International. 2011;42:635–644. Ersanli S, Karabuda C, Beck F, Leblebicioglu B. Resonance frequency analysis of one-stage dental implant stability during the osseointegration period. J Periodontol. 2005;76:1066–71. Yang SM, Shin SY, Kye SB. Relationship between implant stability measured by resonance frequency analysis (RFA) and bone loss during early healing period. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105:12–9. Boronat López A, Balaguer Martínez J, Lamas Pelayo J, Carrillo García C, Peñarrocha Diago M. Resonance frequency analysis of dental implant stability during the healing period. Med Oral Patol Oral Cir Bucal. 2008;13:E244–7. Guler AU, Sumer M, Duran I, Sandikci EO, Telcioglu NT. Resonance frequency analysis of 208 Straumann dental implants during the healing period. J Oral Implantol. 2013;39:161–7. Jepsen S, Rühling A, Jepsen K, Ohlenbusch B, Albers HK. Progressive peri-implantitis. Incidence and prediction of peri-implant attachment loss. Clin Oral Implants Res. 1996;7:133–42. Liskmann S, Zilmer M, Vihalemm T, Salum, Fischer K. Correlation of peri-implant health and myeloperoxidase levels: a cross-sectional clinical study. Clin Oral Implants Res. 2004;15:546–52. Ciantar M, Caruana DJ. Periotron 8000: calibration characteristics and reliability. J Periodontal Res. 1998;33:259–64. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–54. Han J, Lulic M, Lang NP. Factors influencing resonance frequency analysis assessed by Osstell mentor during implant tissue integration: II. Implant surface modifications and implant diameter. Clin Oral Implants Res. 2010;21:605–11. Berglundh T, Abrahamsson I, Lang NP, Lindhe J. De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res. 2003;3:251–62. Emecen-Huja P, Eubank TD, Shapiro V, Yildiz V, Tatakis DN, Leblebicioglu B. Peri-implant versus periodontal wound healing. J Clin Periodontol. 2013;40:816–24. Chapple LLC, Socransky SS, Dibart S, Glenwright DH, Matthews JB. Chemiluminescent assay of alkaline phosphatase in human gingival crevicular fluid: investigations with an experimental gingivitis model and studies on the source of the enzyme within crevicular fluid. J Clin Periodontol. 1996;23:587–94. Plagnat D, Giannopoulou C, Carrel A, Bernard J-P, Mombelli A, Belser UC. Elastase, α2-macroglobulin and alkaline phosphatase in crevicular fluid from implants with and without periimplantitis. Clin Oral Implants Res. 2002;3:227–33. Monjo M, Ramis JM, Rønold HJ, Taxt-Lamolle SF, Ellingsen JE, Lyngstadaas SP. Correlation between molecular signals and bone bonding to titanium implants. Clin Oral Implants Res. 2013;24:1035–43. Slotte C, Lennerås M, Göthberg C, Suska F, Zoric N, Thomsen P, Nannmark U. Gene expression of inflammation and bone healing in peri-implant crevicular fluid after placement and loading of dental implants. A kinetic clinical pilot study using quantitative real-time PCR. Clin Implant Dent Relat Res. 2013;14:723–36. Prati AJ, Casati MZ, Ribeiro FV, Cirano FR, Pastore GP, Pimentel SP, Casarin RCV. Release of bone markers in immediately loaded and nonloaded dental implants: a randomized clinical trial. J Dent Res. 2013;92:161–7. Vogel C, Marcotte EM. Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet. 2012;13:227–32. Frantzi M, Bhat A, Latosinska A. Clinical proteomic biomarkers: relevant issues on study design & technical considerations in biomarker development. Clin Transl Med. 2014;3:7. Lau L, Sanz M, Herrera D, Morillo JM, Martín C, Silva A. Quantitative real-time polymerase chain reaction versus culture: a comparison between two methods for the detection and quantification of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Tannerella forsythensis in subgingival plaque samples. J Clin Periodontol. 2004;31:1061–9. Lekholm U, Zarb G, Albrektsson T. Tissue integrated prostheses. Patient selection and preparation. Chicago: Quintessence Publishing Co Inc; 1985. p. 199–209.