Relating plasticity to dislocation properties by data analysis: scaling vs. machine learning approaches
Tóm tắt
Từ khóa
Tài liệu tham khảo
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin, et al. Tensorflow: Large-scale machine learning on heterogeneous systems. arXiv:1603.04467. (2016)
J. Bailey, P. Hirsch, The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philos. Mag. 5(53), 485–497 (1960)
C.M. Bishop, N.M. Nasrabadi, Pattern recognition and machine learning, vol. 4 (Springer, 2006)
S. Biswas, D. Fernandez Castellanos, M. Zaiser, Prediction of creep failure time using machine learning. Sci. Rep. 10(1), 1–11 (2010)
F. Chollet, et al. keras. (2015), https://keras.io. Accessed 20 Dec 2022
H. Fan, Q. Wang, J.A. El-Awady, D. Raabe, M. Zaiser, Strain rate dependency of dislocation plasticity. Nat. Commun. 12(1845), 1–11 (2021)
F. Font-Clos, M. Zanchi, S. Hiemer, S. Bonfanti, R. Guerra, M. Zaiser, S. Zapperi, Predicting the failure of two-dimensional silica glasses. Nat. Commun. 13(2820), 1-11 (2022)
P. Hähner, M. Zaiser, Dislocation dynamics and work hardening of fractal dislocation cell structures. Mater. Sci. Eng. A 272, 443–454 (1999)
T. Hastie, R. Tibshirani, J.H. Friedman, J.H. Friedman, The elements of statistical learning: data mining, inference, and prediction, vol. 2 (Springer, New York, 2009), pp. 241–249
S. Hiemer, S. Zapperi, From mechanism-based to data-driven approaches in materials science. Mater. Theory 5(1), 1–9 (2021)
P. Hirsch, D. Warrington, The flow stress of aluminium and copper at high temperatures. Philos. Mag. 6(66), 735–768 (1961)
D.P. Kingma, J. Ba, Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
M.C. Miguel, A. Vespignani, M. Zaiser, S. Zapperi, Dislocation jamming and andrade creep. Phys. Rev. Lett. 89(16), 165501 (2002)
N.F. Mott, Bakerian lecture: dislocations, plastic flow and creep. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 220(1140), 1–14 (1953)
F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al., Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
P. Rudolph, C. Frank-Rotsch, U. Juda, F. Kiessling, Scaling of dislocation cells in gaas crystals by global numeric simulation and their restraints by in situ control of stoichiometry. Mater. Sci. Engng. A 400–401, 170–174 (2005)
M. Sauzay, L.P. Kubin, Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals. Prog. Mater. Sci. 56(6, SI), 725–784 (2011). https://doi.org/10.1016/j.pmatsci.2011.01.006
A. Seeger, J. Diehl, S. Mader, H. Rebstock, Work-hardening and work-softening of face-centred cubic metal crystals. Phil. Mag. 2(15), 323–350 (1957)
M. Stricker, M. Sudmanns, K. Schulz, T. Hochrainer, D. Weygand, Dislocation multiplication in stage ii deformation of fcc multi-slip single crystals. J. Mech. Phys. Solids 119, 319–333 (2018)
G.I. Taylor, The mechanism of plastic deformation of crystals. part i.—theoretical. Proc. R. Soc. Lond. Ser. A Containing Pap. Math. Phys. Character 145(855), 362–387 (1934)
T. Webb, Z. Dulberg, S. Frankland, A. Petrov, R. O’Reilly, J. Cohen, Learning representations that support extrapolation. in International conference on machine learning (PMLR, 2020), pp. 10136–10146
R. Wu, M. Zaiser, Thermodynamic considerations on a class of dislocation-based constitutive models. J. Mech. Phys. Solids 159, 104735 (2022)
M. Zaiser, P. Hähner, The flow stress of fractal dislocation arrangements. Mater. Sci. Eng. A 270, 299–307 (1999)