Regulation of redox homeostasis in the yeast <i>Saccharomyces cerevisiae</i>

Physiologia Plantarum - Tập 120 Số 1 - Trang 12-20 - 2004
Glen L. Wheeler1, Chris M. Grant
1Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), Manchester M60 1QD, UK.

Tóm tắt

An increasingly important area of research is based on sulphydryl chemistry, since the oxidation of ‐SH groups is one of the earliest observable events during oxidant‐mediated damage and ‐SH groups play a critical role in the function of many macromolecular structures including enzymes, transcription factors and membrane proteins. Glutaredoxins and thioredoxins are small heat‐stable oxidoreductases, conserved throughout evolution, which play key roles in maintaining the cellular redox balance. Much progress has been made in analysing these systems in the yeast Saccharomyces cerevisiae which is a very useful model eukaryote due to its ease of genetic manipulation, its compact genome, the availability of the entire genome sequence, and the current rate of progress in gene function research. Yeast, like all eukaryotes, contains a number of glutaredoxin and thioredoxin isoenzymes located in both the cytoplasm and the mitochondria. This review describes recent findings made in yeast that are leading to a better understanding of the regulation and role of redox homeostasis in eukaryotic cell metabolism.

Từ khóa


Tài liệu tham khảo

10.1074/jbc.M105672200

10.1073/pnas.232703799

10.1074/jbc.M002916200

10.1021/bi00153a023

Chae HZ, 1993, Cloning, sequencing and mutation of thiol‐specific antioxidant gene of Saccharomyces cerevisiae, J Biol Chem, 268, 16815, 10.1016/S0021-9258(19)85489-3

10.1007/s004380050017

10.1074/jbc.273.45.29915

CollinsonEJ GrantCM(2003) Role of yeast glutaredoxins as glutathioneS‐transferases. J Biol Chem 278: 22492–22497

10.1074/jbc.M111686200

10.1006/bbrc.1997.7812

10.1093/emboj/19.19.5157

Demple B, 1998, A bridge to control, Science, 279, 1655, 10.1126/science.279.5357.1655

10.1074/jbc.M004167200

10.1046/j.1365-2958.2000.01948.x

Evans MV, 1997, Toxicity of linoleic acid hydroperoxide to Saccharomyces cerevisiae: Involvement of a respiration‐related process for maximal sensitivity and adaptive response, J Bacteriol, 180, 483, 10.1128/JB.180.3.483-490.1998

10.1016/S0021-9258(18)52350-4

10.1016/0003-9861(90)90093-E

10.1046/j.1365-2958.2002.02795.x

10.1016/S0167-4781(99)00234-1

10.1007/BF02426954

10.1091/mbc.8.9.1699

10.1128/MCB.19.4.2650

10.3109/10715769309111598

Halliwell B, 1989, Free Radicals in Biology and Medicine

10.1073/pnas.73.7.2275

10.1016/S0021-9258(18)71625-6

Holmgren A, 1990, Glutathione: Metabolism and Physiological Functions., 146

10.1016/0076-6879(95)52031-7

10.1073/pnas.85.8.2464

10.1074/jbc.274.38.27002

10.1016/S0167-4781(97)00199-1

10.1016/0014-5793(95)00603-7

10.1074/jbc.274.40.28459

10.1016/S0006-2952(02)01177-2

10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S

10.1021/bi9817818

10.1006/abbi.1996.0482

10.1128/MCB.21.18.6139-6150.2001

10.1002/j.1460-2075.1994.tb06304.x

10.1074/jbc.274.23.16040

Lee J‐C, 2000, The essential and ancillary role of glutathione in Saccharomyces cerevisiae: studies with a grande gsh1 disruptant strain, FEMS Yeast Res, 1, 57

Lee KO, Lee LJ, 2002, GSH‐dependent peroxidase activity of the rice (Oryza sativa), g, 296, 1152

10.1073/pnas.94.1.42

10.1074/jbc.271.11.6509

10.1007/BF00312627

López‐Barea J, 1990, Glutathione: Metabolism and Physiological Functions., 105

10.1091/mbc.9.5.1081

10.1016/S0021-9258(19)77815-6

10.1146/annurev.bi.52.070183.003431

10.1016/S1360-1385(99)01475-2

10.1016/0891-5849(94)90079-5

10.1093/emboj/16.5.1035

10.1073/pnas.191282098

10.1073/pnas.95.6.3312

10.1074/jbc.M910401199

10.1016/S0021-9258(18)31570-9

10.1006/abbi.1995.1240

10.1091/mbc.7.11.1805

10.1074/jbc.275.8.5723

10.1074/jbc.274.10.6366

10.1042/bj20020570

10.1074/jbc.272.25.15661

10.1146/annurev.genet.32.1.163

10.1128/MCB.19.12.8180

10.1091/mbc.01-10-0517

10.1016/S0076-6879(94)33023-9

10.1046/j.1365-313X.2003.01669.x

10.1042/bj3600001

10.1074/jbc.M200559200

10.1074/jbc.M200677200

10.1074/jbc.M009814200

10.1111/j.1574-6968.1996.tb08386.x

10.1111/j.1365-2958.1995.tb02407.x

10.1093/emboj/17.19.5543

10.1074/jbc.275.20.15535

Sundquist AR, 1989, The function of gamma‐glutamylcysteine and bis‐gamma‐glutamylcystine reductase in halobacterium halobium, J Biol Chem, 264, 719, 10.1016/S0021-9258(19)85002-0

10.1006/abbi.1995.1261

10.1016/S0959-437X(99)80008-2

10.1046/j.1365-2958.2002.03216.x

10.1038/sj.embor.embor729

10.1074/jbc.274.28.19714

10.1074/jbc.M210080200

10.1046/j.1365-2958.2002.03174.x

10.1074/jbc.275.3.1902

Wu A, 1994, GSH1, which encodes γ‐glutamylcysteine synthetase, is a target gene for yAP‐1 transcriptional regulation, Mol Cell Biol, 14, 5832

Yang YF, 1991, Identification and characterization of the functional amino acids at the active center of pig liver thioltransferase by site‐directed mutagenesis, J Biol Chem, 266, 12759, 10.1016/S0021-9258(18)98964-7

10.1152/physrev.1994.74.1.139