Regulation of paracellular Na+ and Cl conductances by hydrostatic pressure

Cell Biology International - Tập 33 - Trang 949-956 - 2009
Shinsaku Tokuda1, Naomi Niisato1, Toshiki Nagai1, Akiyuki Taruno1, Ken-ichi Nakajima1, Hiroaki Miyazaki1, Toshiki Yamada1, Shigekuni Hosogi1, Mariko Ohta1, Kyosuke Nishio2, Yoshinobu Iwasaki3, Yoshinori Marunaka1,3
1Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
2Shin-Koiwa Clinic, Tokyo 124-0023, Japan
3Department of Respiratory Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan

Tóm tắt

Abstract

The effect of hydrostatic pressure on the paracellular ion conductance (Gp) composed of the Na+ conductance (GNa) and the Cl conductance (GCl) has been Investigated. Gp, GNa and GCl were time‐dependently increased after applying an osmotic gradient generated by NaCl with basolateral hypotonicity. Hydrostatic pressure (1–4 cm H2O) applied from the basolateral side enhanced the osmotic gradient‐induced increase in Gp, GNa and GCl in a magnitude‐dependent manner, while the hydrostatic pressure applied from the apical side diminished the osmotic gradient‐induced increase in Gp, GNa and GCl. How the hydrostatic pressure influences Gp, GNa and GCl under an isosmotic condition was also investigated. Gp, GNa and GCl were stably constant under a condition with basolateral application of sucrose canceling the NaCl‐generated osmotic gradient (an isotonic condition). Even under this stable condition, the basolaterally applied hydrostatic pressure drastically elevated Gp, GNa and GCl, while apically applied hydrostatic pressure had little effect on Gp, GNa or GCl. Taken together, these observations suggest that certain factors controlled by the basolateral osmolality and the basolaterally applied hydrostatic pressure mainly regulate the Gp, GNa and GCl.


Tài liệu tham khảo

10.1152/physrev.00012.2006 Eaton D.C., 1990, Current topics membranes and transport, 61 10.1016/j.bbrc.2005.08.096 10.1083/jcb.147.4.891 10.1083/jcb.143.2.391 10.1016/j.ceb.2003.10.008 10.1152/ajpcell.1981.240.3.C103 10.1085/jgp.87.3.443 10.1016/j.bbrc.2006.03.009 10.1097/00041552-200409000-00012 10.1016/0076-6879(90)91045-8 10.1097/01.mnh.0000232883.43093.76 10.1007/s10157-005-0355-x 10.1007/s00232-006-0864-x 10.1113/jphysiol.2001.013248 10.1016/j.cbpa.2006.12.039 10.1152/ajprenal.00244.2006 10.1002/jcp.20647 10.1111/j.1469-7793.1999.0417p.x 10.1152/ajprenal.00131.2004 10.1016/j.bcp.2003.10.026 10.1016/j.bbrc.2007.04.192 10.1016/j.bbrc.2007.07.002 10.1016/j.bbrc.2007.03.095 10.1006/bbrc.1999.1843 10.1002/jcp.20823 10.1152/ajprenal.00068.2002 10.1007/s10254-004-0023-7 10.1152/ajprenal.00011.2007 10.1152/ajprenal.00250.2007 10.1016/j.bbrc.2007.08.187 10.1016/S0006-291X(02)02514-7 10.1016/j.bbrc.2007.11.167 10.1016/j.bbrc.2005.05.046 10.1146/annurev.physiol.68.040104.131404 10.1007/BF00584942 10.1165/rcmb.2006-0064OC 10.1016/j.bbrc.2007.08.065