Regulation of germline stem cell proliferation downstream of nutrient sensing

Patrick Narbonne1, Richard Roy1
1Department of Biology, McGill University, Montréal, Canada

Tóm tắt

Stem cells have recently attracted significant attention largely due to their potential therapeutic properties, but also because of their role in tumorigenesis and their resemblance, in many aspects, to cancerous cells. Understanding how stem cells are regulated, namely with respect to the control of their proliferation and differentiation within a functional organism, is thus primordial to safely profit from their therapeutic benefits. Here, we review recent advances in the understanding of germline stem cell proliferation control by factors that respond to the nutritional status and/or insulin signaling, through studies performed in C. elegans and Drosophila. Together, these data uncover some shared fundamental features that underlie the central control of cellular proliferation within a target stem cell population in an organism. These features may indeed be conserved in higher organisms and may apply to various other stem cell populations.

Từ khóa


Tài liệu tham khảo

Morrison SJ, Kimble J: Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 2006,441(7097):1068–1074. 10.1038/nature04956

Scadden DT: The stem-cell niche as an entity of action. Nature 2006,441(7097):1075–1079. 10.1038/nature04957

Wong MD, Jin Z, Xie T: Molecular mechanisms of germline stem cell regulation. Annu Rev Genet 2005, 39: 173–195. 10.1146/annurev.genet.39.073003.105855

Cox DN, Chao A, Lin H: piwi encodes a nucleoplasmic factor whose activity modulates the number and division rate of germline stem cells. Development 2000,127(3):503–514.

Maciejowski J, Ugel N, Mishra B, Isopi M, Hubbard EJ: Quantitative analysis of germline mitosis in adult C. elegans. Dev Biol 2006,292(1):142–151. 10.1016/j.ydbio.2005.12.046

Pepper AS, Lo TW, Killian DJ, Hall DH, Hubbard EJ: The establishment of Caenorhabditis elegans germline pattern is controlled by overlapping proximal and distal somatic gonad signals. Dev Biol 2003,259(2):336–350. 10.1016/S0012-1606(03)00203-3

Shcherbata HR, Hatfield S, Ward EJ, Reynolds S, Fischer KA, Ruohola-Baker H: The MicroRNA pathway plays a regulatory role in stem cell division. Cell Cycle 2006,5(2):172–175.

Forstemann K, Tomari Y, Du T, Vagin VV, Denli AM, Bratu DP, Klattenhoff C, Theurkauf WE, Zamore PD: Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol 2005,3(7):e236. 10.1371/journal.pbio.0030236

Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H: Stem cell division is regulated by the microRNA pathway. Nature 2005,435(7044):974–978. 10.1038/nature03816

Carrera AC: TOR signaling in mammals. J Cell Sci 2004,117(Pt 20):4615–4616. 10.1242/jcs.01311

Hardie DG: New roles for the LKB1 --> AMPK pathway. Curr Opin Cell Biol 2005,17(2):167–173. 10.1016/j.ceb.2005.01.006

Hardie DG, Carling D, Carlson M: The AMP-activated/SNFl protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 1998, 67: 821–855. 10.1146/annurev.biochem.67.1.821

Saltiel AR, Kahn CR: Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001,414(6865):799–806. 10.1038/414799a

Sijen T, Plasterk RH: Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 2003,426(6964):310–314. 10.1038/nature02107

Marini A, Matmati N, Morpurgo G: Starvation in yeast increases non-adaptive mutation. Curr Genet 1999,35(2):77–81. 10.1007/s002940050435

Lozano R, Lusby WR, Chitwood DJ, Thompson MJ, Svoboda JA: Inhibition of C28 and C29 phytosterol metabolism by N,N-dimethyldodecanamine in the nematode Caenorhabditis elegans. Lipids 1985,20(3):158–166. 10.1007/BF02534248

Shim YH, Chun JH, Lee EY, Paik YK: Role of cholesterol in germ-line development of Caenorhabditis elegans. Mol Reprod Dev 2002,61(3):358–366. 10.1002/mrd.10099

Drummond-Barbosa D, Spradling AC: Stem cells and their progeny respond to nutritional changes during Drosophila oogenesis. Dev Biol 2001,231(1):265–278. 10.1006/dbio.2000.0135

Albert PS, Riddle DL: Mutants of Caenorhabditis elegans that form dauer-like larvae. Dev Biol 1988,126(2):270–293. 10.1016/0012-1606(88)90138-8

Riddle DL, Swanson MM, Albert PS: Interacting genes in nematode dauer larva formation. Nature 1981,290(5808):668–671. 10.1038/290668a0

Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G: daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 1997,277(5328):942–946. 10.1126/science.277.5328.942

Morris JZ, Tissenbaum HA, Ruvkun G: A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans. Nature 1996,382(6591):536–539. 10.1038/382536a0

Paradis S, Ailion M, Toker A, Thomas JH, Ruvkun G: A PDK1 homolog is necessary and sufficient to transduce AGE-1 PI3 kinase signals that regulate diapause in Caenorhabditis elegans. Genes Dev 1999,13(11):1438–1452.

Paradis S, Ruvkun G: Caenorhabditis elegans Akt/PKB transduces insulin receptor-like signals from AGE-1 PI3 kinase to the DAF-16 transcription factor. Genes Dev 1998,12(16):2488–2498.

Ogg S, Ruvkun G: The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol Cell 1998,2(6):887–893. 10.1016/S1097-2765(00)80303-2

Lin K, Dorman JB, Rodan A, Kenyon C: daf-16: An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 1997,278(5341):1319–1322. 10.1126/science.278.5341.1319

Ogg S, Paradis S, Gottlieb S, Patterson GI, Lee L, Tissenbaum HA, Ruvkun G: The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 1997,389(6654):994–999. 10.1038/40194

Narbonne P, Roy R: Inhibition of germline proliferation during C. elegans dauer development requires PTEN, LKB1 and AMPK signalling. Development 2006,133(4):611–619. 10.1242/dev.02232

Gems D, Sutton AJ, Sundermeyer ML, Albert PS, King KV, Edgley ML, Larsen PL, Riddle DL: Two pleiotropic classes of daf-2 mutation affect larval arrest, adult behavior, reproduction and longevity in Caenorhabditis elegans. Genetics 1998,150(1):129–155.

Bohni R, Riesgo-Escovar J, Oldham S, Brogiolo W, Stocker H, Andruss BF, Beckingham K, Hafen E: Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1–4. Cell 1999,97(7):865–875. 10.1016/S0092-8674(00)80799-0

LaFever L, Drummond-Barbosa D: Direct control of germline stem cell division and cyst growth by neural insulin in Drosophila. Science 2005,309(5737):1071–1073. 10.1126/science.1111410

Lu C, Lam HN, Menon RK: New members of the insulin family: regulators of metabolism, growth and now. reproduction. Pediatr Res 2005,57(5 Pt 2):70R-73R. 10.1203/01.PDR.0000159573.55187.CA

Brogiolo W, Stocker H, Ikeya T, Rintelen F, Fernandez R, Hafen E: An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr Biol 2001,11(4):213–221. 10.1016/S0960-9822(01)00068-9

Pierce SB, Costa M, Wisotzkey R, Devadhar S, Homburger SA, Buchman AR, Ferguson KC, Heller J, Platt DM, Pasquinelli AA, et al.: Regulation of DAF-2 receptor signaling by human insulin and ins-1, a member of the unusually large and diverse C. elegans insulin gene family. Genes Dev 2001,15(6):672–686. 10.1101/gad.867301

Ikeya T, Galic M, Belawat P, Nairz K, Hafen E: Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila. Curr Biol 2002,12(15):1293–1300. 10.1016/S0960-9822(02)01043-6

Cao C, Brown MR: Localization of an insulin-like peptide in brains of two Hies. Cell Tissue Res 2001,304(2):317–321. 10.1007/s004410100367

Drummond-Barbosa D, Spradling AC: Alpha-endosulfine, a potential regulator of insulin secretion, is required for adult tissue growth control in Drosophila. Dev Biol 2004,266(2):310–321. 10.1016/j.ydbio.2003.10.028

Kawano T, Ito Y, Ishiguro M, Takuwa K, Nakajima T, Kimura Y: Molecular cloning and characterization of a new insulin/IGF-like peptide of the nematode Caenorhabditis elegans. Biochem Biophys Res Commun 2000,273(2):431–436. 10.1006/bbrc.2000.2971

Li W, Kennedy SG, Ruvkun G: daf-28 encodes a C. elegans insulin superfamily member that is regulated by environmental cues and acts in the DAF-2 signaling pathway. Genes Dev 2003,17(7):844–858. 10.1101/gad.1066503

Apfeld J, Kenyon C: Cell nonautonomy of C. elegans daf-2 function in the regulation of diapause and life span. Cell 1998,95(2):199–210. 10.1016/S0092-8674(00)81751-1

Iser WB, Gami MS, Minaxi S, Wolkow CA: Insulin signaling in Caenorhabditis elegans regulates both endocrine-like and cell-autonomous outputs. Devel Biol 2006, in press.

Wolkow CA, Kimura KD, Lee MS, Ruvkun G: Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 2000,290(5489):147–150. 10.1126/science.290.5489.147

Libina N, Berman JR, Kenyon C: Tissue-specific activities of C. elegans DAF-16 in the regulation of lifespan. Cell 2003,115(4):489–502. 10.1016/S0092-8674(03)00889-4

Antebi A, Yeh WH, Tait D, Hedgecock EM, Riddle DL: daf-12 encodes a nuclear receptor that regulates the dauer diapause and developmental age in C. elegans. Genes Dev 2000,14(12):1512–1527.

Mak HY, Ruvkun G: Intercellular signaling of reproductive development by the C. elegans DAF-9 cytochrome P450. Development 2004,131(8):1777–1786. 10.1242/dev.01069

Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, Li Y, Suino-Powell K, Xu HE, Auchus RJ, Antebi A, et al.: Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 2006,124(6):1209–1223. 10.1016/j.cell.2006.01.037

Ohkura K, Suzuki N, Ishihara T, Katsura I: SDF-9, a protein tyrosine phosphatase-like molecule, regulates the L3/dauer developmental decision through hormonal signaling in C. elegans. Development 2003,130(14):3237–3248. 10.1242/dev.00540

Larsen PL, Albert PS, Riddle DL: Genes that regulate both development and longevity in Caenorhabditis elegans. Genetics 1995,139(4):1567–1583.

Vowels JJ, Thomas JH: Genetic analysis of chemosensory control of dauer formation in Caenorhabditis elegans. Genetics 1992,130(1):105–123.

Kimble J, Crittenden S: Germline proliferation and its control. Wormbook The C. elegans Research Community; 2005. [http://www.wormbook.org]

Gil EB, Malone Link E, Liu LX, Johnson CD, Lees JA: Regulation of the insulin-like developmental pathway of Caenorhabditis elegans by a homolog of the PTEN tumor suppressor gene. Proc Natl Acad Sci USA 1999,96(6):2925–2930. 10.1073/pnas.96.6.2925

Oldham S, Stocker H, Laffargue M, Wittwer F, Wymann M, Hafen E: The Drosophila insulin/IGF receptor controls growth and size by modulating PtdInsP(3) levels. Development 2002,129(17):4103–4109.

Lee RY, Hench J, Ruvkun G: Regulation of C. elegans DAF-16 and its human ortholog FKHRL1 by the daf-2 insulin-like signaling pathway. Curr Biol 2001,11(24):1950–1957. 10.1016/S0960-9822(01)00595-4

Datta SR, Brunet A, Greenberg ME: Cellular survival: a play in three Akts. Genes Dev 1999,13(22):2905–2927. 10.1101/gad.13.22.2905

Inoki K, Li Y, Zhu T, Wu J, Guan KL: TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol 2002,4(9):648–657. 10.1038/ncb839

Subramaniam K, Seydoux G: nos-1 and nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development 1999,126(21):4861–4871.

Fukuyama M, Rougvie AE, Rothman JH: C. elegans DAF-18/PTEN mediates nutrient-dependent arrest of cell cycle and growth in the germline. Curr Biol 2006,16(8):773–779. 10.1016/j.cub.2006.02.073

Pinkston JM, Garigan D, Hansen M, Kenyon C: Mutations that increase the life span of C. elegans inhibit tumor growth. Science 2006,313(5789):971–975. 10.1126/science.1121908

Brazil DP, Yang ZZ, Hemmings BA: Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 2004,29(5):233–242. 10.1016/j.tibs.2004.03.006

Hong Y, Roy R, Ambros V: Developmental regulation of a cyclin-dependent kinase inhibitor controls postembryonic cell cycle progression in Caenorhabditis elegans. Development 1998,125(18):3585–3597.

Kostic I, Li S, Roy R: cki-1 links cell division and cell fate acquisition in the C. elegans somatic gonad. Dev Biol 2003,263(2):242–252. 10.1016/j.ydbio.2003.07.001

Fukuyama M, Gendreau SB, Deny WB, Rothman JH: Essential embryonic roles of the CKI-1 cyclin-dependent kinase inhibitor in cell-cycle exit and morphogenesis in C elegans. Dev Biol 2003,260(1):273–286. 10.1016/S0012-1606(03)00239-2

Chamberlin HM: Faculty of 1000 Biology. [http://www.f1000biology.com/article/id/1030638/evaluation]

Aladjem MI, Spike BT, Rodewald LW, Hope TJ, Klemm M, Jaenisch R, Wahl GM: ES cells do not activate p53-dependent stress responses and undergo p53-independent apoptosis in response to DNA damage. Curr Biol 1998,8(3):145–155. 10.1016/S0960-9822(98)70061-2

Hong Y, Cervantes RB, Tichy E, Tischfield JA, Stambrook PJ: Protecting genomic integrity in somatic cells and embryonic stem cells. Mutat Res 2006.

Di Cristofano A, Pandolfi PP: The multiple roles of PTEN in tumor suppression. Cell 2000,100(4):387–390. 10.1016/S0092-8674(00)80674-1

Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D, Schlattner U, Wallimann T, Carlson M, Carling D: LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 2003,13(22):2004–2008. 10.1016/j.cub.2003.10.031

Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A, Bignell G, Warren W, Aminoff M, Hoglund P, et al.: A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 1998,391(6663):184–187. 10.1038/34432

Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R, Muller O, Back W, Zimmer M: Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 1998,18(1):38–43. 10.1038/ng0198-38

Young J, Povey S: The genetic basis of tuberous sclerosis. Mol Med Today 1998,4(7):313–319. 10.1016/S1357-4310(98)01245-3

Inoki K, Zhu T, Guan KL: TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003,115(5):577–590. 10.1016/S0092-8674(03)00929-2

Manning BD, Tee AR, Logsdon MN, Blenis J, Cantley LC: Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 2002,10(1):151–162. 10.1016/S1097-2765(02)00568-3

Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA, Cantley LC: The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 2004,6(1):91–99. 10.1016/j.ccr.2004.06.007

Avruch J, Lin Y, Long X, Murthy S, Ortiz-Vega S: Recent advances in the regulation of the TOR pathway by insulin and nutrients. Curr Opin Clin Nutr Metab Care 2005,8(1):67–72. 10.1097/00075197-200501000-00010

Long X, Spycher C, Han ZS, Rose AM, Muller F, Avruch J: TOR deficiency in C. elegans causes developmental arrest and intestinal atrophy by inhibition of mRNA translation. Curr Biol 2002,12(17):1448–1461. 10.1016/S0960-9822(02)01091-6

Hansen IA, Attardo GM, Roy SG, Raikhel AS: Target of rapamycin-dependent activation of S6 kinase is a central step in the transduction of nutritional signals during egg development in a mosquito. J Biol Chem 2005,280(21):20565–20572. 10.1074/jbc.M500712200

Barbet NC, Schneider U, Helliwell SB, Stansfield I, Tuite MF, Hall MN: TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 1996,7(1):25–42.

Chan S: Targeting the mammalian target of rapamycin (mTOR): a new approach to treating cancer. Br J Cancer 2004,91(8):1420–1424. 10.1038/sj.bjc.6602162

Heitman J, Movva NR, Hall MN: Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 1991,253(5022):905–909. 10.1126/science.1715094

Metcalfe SM, Canman CE, Milner J, Morris RE, Goldman S, Kastan MB: Rapamycin and p53 act on different pathways to induce Gl arrest in mammalian cells. Oncogene 1997,15(14):1635–1642. 10.1038/sj.onc.1201341

Zaragoza D, Ghavidel A, Heitman J, Schultz MC: Rapamycin induces the GO program of transcriptional repression in yeast by interfering with the TOR signaling pathway. Mol Cell Biol 1998,18(8):4463–4470.

Martin SG, St Johnston D: A role for Drosophila LKB1 in anterior-posterior axis formation and epithelial polarity. Nature 2003,421(6921):379–384. 10.1038/nature01296

Watts JL, Morton DG, Bestman J, Kemphues KJ: The C. elegans par-4 gene encodes a putative serine-threonine kinase required for establishing embryonic asymmetry. Development 2000,127(7):1467–1475.

Baas AF, Kuipers J, van der Wel NN, Batlle E, Koerten HK, Peters PJ, Clevers HC: Complete polarization of single intestinal epithelial cells upon activation of LKB1 by STRAD. Cell 2004,116(3):457–466. 10.1016/S0092-8674(04)00114-X

Alessi DR, Sakamoto K, Bayascas JR: LKB1-Dependent Signaling Pathways. Annu Rev Biochem 2006.

Kishi M, Pan YA, Crump JG, Sanes JR: Mammalian SAD kinases are required for neuronal polarization. Science 2005,307(5711):929–932. 10.1126/science.1107403

Wolkow CA, Munoz MJ, Riddle DL, Ruvkun G: Insulin receptor substrate and p55 orthologous adaptor proteins function in the Caenorhabditis elegans daf-2/insulin-like signaling pathway. J Biol Chem 2002,277(51):49591–49597. 10.1074/jbc.M207866200

Hertweck M, Gobel C, Baumeister R: C. elegans SGK-1 is the critical component in the Akt/PKB kinase complex to control stress response and life span. Dev Cell 2004,6(4):577–588. 10.1016/S1534-5807(04)00095-4