Regulation of excitation-contraction coupling in mouse cardiac myocytes: integrative analysis with mathematical modelling

BMC Physiology - Tập 9 Số 1 - 2009
Jussi T. Koivumäki1, Tapani Korhonen2, Jouni Takalo1, Matti Weckström1, Pasi Tavi2
1Department of Physics, University of Oulu & Biocenter Oulu, Finland
2Department of Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Kuopio, Kuopio, Finland

Tóm tắt

Abstract Background The cardiomyocyte is a prime example of inherently complex biological system with inter- and cross-connected feedback loops in signalling, forming the basic properties of intracellular homeostasis. Functional properties of cells and tissues have been studied e.g. with powerful tools of genetic engineering, combined with extensive experimentation. While this approach provides accurate information about the physiology at the endpoint, complementary methods, such as mathematical modelling, can provide more detailed information about the processes that have lead to the endpoint phenotype. Results In order to gain novel mechanistic information of the excitation-contraction coupling in normal myocytes and to analyze sophisticated genetically engineered heart models, we have built a mathematical model of a mouse ventricular myocyte. In addition to the fundamental components of membrane excitation, calcium signalling and contraction, our integrated model includes the calcium-calmodulin-dependent enzyme cascade and the regulation it imposes on the proteins involved in excitation-contraction coupling. With the model, we investigate the effects of three genetic modifications that interfere with calcium signalling: 1) ablation of phospholamban, 2) disruption of the regulation of L-type calcium channels by calcium-calmodulin-dependent kinase II (CaMK) and 3) overexpression of CaMK. We show that the key features of the experimental phenotypes involve physiological compensatory and autoregulatory mechanisms that bring the system to a state closer to the original wild-type phenotype in all transgenic models. A drastic phenotype was found when the genetic modification disrupts the regulatory signalling system itself, i.e. the CaMK overexpression model. Conclusion The novel features of the presented cardiomyocyte model enable accurate description of excitation-contraction coupling. The model is thus an applicable tool for further studies of both normal and defective cellular physiology. We propose that integrative modelling as in the present work is a valuable complement to experiments in understanding the causality within complex biological systems such as cardiac myocytes.

Từ khóa


Tài liệu tham khảo

Bers DM: Cardiac excitation-contraction coupling. Nature. 2002, 415: 198-205. 10.1038/415198a.

DeSantiago J, Maier LS, Bers DM: Frequency-dependent acceleration of relaxation in the heart depends on CaMKII, but not phospholamban. J Mol Cell Cardiol. 2002, 34: 975-984. 10.1006/jmcc.2002.2034.

Molkentin JD, Dorn GW: Cytoplasmic signaling pathways that regulate cardiac hypertrophy. Annual Review of Physiology. 2001, 63: 391-426. 10.1146/annurev.physiol.63.1.391.

Frey N, Olson EN: Cardiac hypertrophy: The good, the bad and the ugly. Annual Review of Physiology. 2003, 65: 45-79. 10.1146/annurev.physiol.65.092101.142243.

Sjaastad I, Wasserstrom JA, Sejersted OM: Heart failure - a challenge to our current concepts of excitation-contraction coupling. Journal of Physiology-London. 2003, 546: 33-47. 10.1113/jphysiol.2002.034728.

Luo WS, Grupp IL, Harrer J, Ponniah S, Grupp G, Duffy JJ, Doetschman T, Kranias EG: Targeted Ablation of the Phospholamban Gene Is Associated with Markedly Enhanced Myocardial-Contractility and Loss of Beta-Agonist Stimulation. Circulation Research. 1994, 75: 401-409.

Meyer M, Dillman WH: Sarcoplasmic reticulum Ca2+-ATPase overexpression by adenovirus mediated gene transfer and in transgenic mice. Cardiovascular Research. 1998, 37: 360-366. 10.1016/S0008-6363(97)00270-8.

Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, Grant SR, Olson EN: A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998, 93: 215-228. 10.1016/S0092-8674(00)81573-1.

Zhang T, Maier LS, Dalton ND, Miyamoto S, Ross J, Bers DM, Brown JH: The delta(C) isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circulation Research. 2003, 92: 912-919. 10.1161/01.RES.0000069686.31472.C5.

Witcher DR, Kovacs RJ, Schulman H, Cefali DC, Jones LR: Unique Phosphorylation Site on the Cardiac Ryanodine Receptor Regulates Calcium-Channel Activity. Journal of Biological Chemistry. 1991, 266: 11144-11152.

Xu AD, Netticadan T, Jones DL, Narayanan N: Serine phosphorylation of the sarcoplasmic reticulum Ca2+-ATPase in the intact beating rabbit heart. Biochemical and Biophysical Research Communications. 1999, 264: 241-246. 10.1006/bbrc.1999.1491.

MacLennan DH, Kranias EG: Phospholamban: A crucial regulator of cardiac contractility. Nature Reviews Molecular Cell Biology. 2003, 4: 566-577. 10.1038/nrm1151.

Simmerman HK, Collins JH, Theibert JL, Wegener AD, Jones LR: Sequence analysis of phospholamban. Identification of phosphorylation sites and two major structural domains. J Biol Chem. 1986, 261: 13333-13341.

Dzhura I, Wu Y, Colbran RJ, Balser JR, Anderson ME: Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nat Cell Biol. 2000, 2: 173-177. 10.1038/35004052.

Wu YJ, Dzhura I, Colbran RJ, Anderson ME: Calmodulin kinase and a calmodulin-binding 'IQ' domain facilitate L-type Ca2+ current in rabbit ventricular myocytes by a common mechanism. Journal of Physiology-London. 2001, 535: 679-687. 10.1111/j.1469-7793.2001.t01-1-00679.x.

De Koninck P, Schulman H: Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science. 1998, 279: 227-230. 10.1126/science.279.5348.227.

Tavi P, Allen DG, Niemela P, Vuolteenaho O, Weckstrom M, Westerblad H: Calmodulin kinase modulates Ca2+ release in mouse skeletal muscle. Journal of Physiology-London. 2003, 551: 5-12. 10.1113/jphysiol.2003.042002.

Bassani RA, Mattiazzi A, Bers DM: Camkii Is Responsible for Activity-Dependent Acceleration of Relaxation in Rat Ventricular Myocytes. American Journal of Physiology-Heart and Circulatory Physiology. 1995, 37: H703-H712.

Li L, Chu GX, Kranias EG, Bers DM: Cardiac myocyte calcium transport in phospholamban knockout mouse: relaxation and endogenous CaMKII effects. American Journal of Physiology-Heart and Circulatory Physiology. 1998, 43: H1335-H1347.

Maier LS, Zhang T, Chen L, DeSantiago J, Brown JH, Bers DM: Transgenic CaMKII delta(C) overexpression uniquely alters cardiac myocyte Ca2+ handling - Reduced SR Ca2+ load and activated SR Ca2+ release. Circulation Research. 2003, 92: 904-911. 10.1161/01.RES.0000069685.20258.F1.

Ito K, Yan X, Tajima M, Su Z, Barry WH, Lorell BH: Contractile reserve and intracellular calcium regulation in mouse myocytes from normal and hypertrophied failing hearts. Circulation Research. 2000, 87: 588-595.

Stuyvers BD, McCulloch AD, Guo JQ, Duff HJ, ter Keurs HEDJ: Effect of stimulation rate, sarcomere length and Ca2+ on force generation by mouse cardiac muscle. Journal of Physiology-London. 2002, 544: 817-830. 10.1113/jphysiol.2002.024430.

Stull LB, Leppo MK, Marban E, Janssen PML: Physiological determinants of contractile force generation and calcium handling in mouse myocardium. Journal of Molecular and Cellular Cardiology. 2002, 34: 1367-1376. 10.1006/jmcc.2002.2065.

Tavi P, Hansson A, Zhang SJ, Larsson NG, Westerblad H: Abnormal Ca2+ release and catecholamine-induced arrhythmias in mitochondrial cardiomyopathy. Human Molecular Genetics. 2005, 14: 1069-1076. 10.1093/hmg/ddi119.

Tavi P, Sjogren M, Lunde PK, Zhang SJ, Abbate F, Vennstrom B, Westerblad H: Impaired Ca2+ handling and contraction in cardiomyocytes from mice with a dominant negative thyroid hormone receptor alpha(1). Journal of Molecular and Cellular Cardiology. 2005, 38: 655-663. 10.1016/j.yjmcc.2005.02.008.

D'Alcantara P, Schiffmann SN, Swillens S: Bidirectional synaptic plasticity as a consequence of interdependent Ca2+-controlled phosphorylation and dephosphorylation pathways. Eur J Neurosci. 2003, 17: 2521-2528. 10.1046/j.1460-9568.2003.02693.x.

Santana LF, Kranias EG, Lederer WJ: Calcium sparks and excitation-contraction coupling in phospholamban-deficient mouse ventricular myocytes. Journal of Physiology-London. 1997, 503: 21-29. 10.1111/j.1469-7793.1997.021bi.x.

Wolska BM, Stojanovic MO, Luo WS, Kranias EG, Solaro RJ: Effect of ablation of phospholamban on dynamics of cardiac myocyte contraction and intracellular Ca2+. American Journal of Physiology-Cell Physiology. 1996, 40: C391-C397.

Frank K, Tilgmann C, Shannon TR, Bers DM, Kranias EG: Regulatory role of phospholamban in the efficiency of cardiac sarcoplasmic reticulum Ca2+ transport. Biochemistry. 2000, 39: 14176-14182. 10.1021/bi001049k.

Mattiazzi A, Mundina-Weilenmann C, Chu GX, Vittone L, Kranias E: Role of phospholamban phosphorylation on Thr(17) in cardiac physiological and pathological conditions. Cardiovascular Research. 2005, 68: 366-375. 10.1016/j.cardiores.2005.08.010.

Shannon TR, Chu GX, Kraniass EG, Bers DM: Phospholamban decreases the energetic efficiency of the Sarcoplasmic reticulum Ca pump. Journal of Biological Chemistry. 2001, 276: 7195-7201. 10.1074/jbc.M007085200.

Huser J, Bers DM, Blatter LA: Subcellular properties of [Ca2+]i transients in phospholamban-deficient mouse ventricular cells. American Journal of Physiology-Heart and Circulatory Physiology. 1998, 43: H1800-H1811.

Chu G, Luo W, Slack JP, Tilgmann C, Sweet WE, Spindler M, Saupe KW, Boivin GP, Moravec CS, Matlib MA, et al: Compensatory mechanisms associated with the hyperdynamic function of phospholamban-deficient mouse hearts. Circ Res. 1996, 79: 1064-1076.

Masaki H, Sato Y, Luo WS, Kranias EG, Yatani A: Phospholamban deficiency alters inactivation kinetics of L-type Ca2+ channels in mouse ventricular myocytes. American Journal of Physiology-Heart and Circulatory Physiology. 1997, 41: H606-H612.

Yuan WL, Bers DM: Ca-Dependent Facilitation of Cardiac Ca Current Is Due to Ca-Calmodulin-Dependent Protein-Kinase. American Journal of Physiology. 1994, 267: H982-H993.

Anderson ME: Calmodulin kinase and L-type calcium channels: A recipe for arrhythmias?. Trends in Cardiovascular Medicine. 2004, 14: 152-161. 10.1016/j.tcm.2004.02.005.

Maier LS: CaMKII delta overexpression in hypertrophy and heart failure: cellular consequences for excitation-contraction coupling. Brazilian Journal of Medical and Biological Research. 2005, 38: 1293-1302. 10.1590/S0100-879X2005000900002.

Maier LS, Bers DM: Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart. Cardiovascular Research. 2007, 73: 631-640. 10.1016/j.cardiores.2006.11.005.

Zhang T, Brown JH: Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovascular Research. 2004, 63: 476-486. 10.1016/j.cardiores.2004.04.026.

Kohlhaas M, Zhang T, Seidler T, Zibrova D, Dybkova N, Steen A, Wagner S, Chen L, Brown JH, Bers DM, Maier LS: Increased sarcoplasmic reticulum calcium leak but unaltered Contractility by acute CaMKII overexpression in isolated rabbit cardiac myocytes. Circulation Research. 2006, 98: 235-244. 10.1161/01.RES.0000200739.90811.9f.

Tavi P, Pikkarainen S, Ronkainen J, Niemela P, Ilves M, Weckstrom M, Vuolteenaho O, Bruton J, Westerblad H, Ruskoaho H: Pacing-induced calcineurin activation controls cardiac Ca2+ signalling and gene expression. Journal of Physiology-London. 2004, 554: 309-320. 10.1113/jphysiol.2003.053579.

Bhalla US, Iyengar R: Robustness of the bistable behavior of a biological signaling feedback loop. Chaos. 2001, 11: 221-226. 10.1063/1.1350440.

Tobimatsu T, Fujisawa H: Tissue-specific expression of four types of rat calmodulin-dependent protein kinase II mRNAs. J Biol Chem. 1989, 264: 17907-17912.

Chiba H, Schneider N, Matsuoka S, Noma A: A simulation study on the activation of cardiac CaMKII {delta}-isoform and its regulation by phosphatases. Biophysical Journal. 2008, 95: 2139-2149. 10.1529/biophysj.107.118505.

Saucerman JJ, Bers DM: Calmodulin Mediates Differential Sensitivity of CaMKII and Calcineurin to Local Ca2+ in Cardiac Myocytes. 2008, 95: 4597-4612.

Bhalla US, Iyengar R: Emergent properties of networks of biological signaling pathways. Science. 1999, 283: 381-387. 10.1126/science.283.5400.381.

Toyofuku T, Kurzydlowski K, Narayanan N, Maclennan DH: Identification of Ser(38) as the Site in Cardiac Sarcoplasmic-Reticulum Ca2+-Atpase That Is Phosphorylated by Ca2+ Calmodulin-Dependent Protein-Kinase. Journal of Biological Chemistry. 1994, 269: 26492-26496.

Maier LS, Bers DM, Brown JH: Calmodulin and Ca2+/calmodulin kinases in the heart - Physiology and pathophysiology. Cardiovascular Research. 2007, 73: 629-630. 10.1016/j.cardiores.2007.01.005.

Hanson PI, Schulman H: Inhibitory Autophosphorylation of Multifunctional Ca2+ Calmodulin-Dependent Protein-Kinase Analyzed by Site-Directed Mutagenesis. Journal of Biological Chemistry. 1992, 267: 17216-17224.

Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM: Ca2+/calmodulin-dependent protein kinase modulates cardiac ryanodine receptor phosphorylation and sarcoplasmic reticulum Ca2+ leak in heart failure. Circulation Research. 2005, 97: 1314-1322. 10.1161/01.RES.0000194329.41863.89.

Slack JP, Grupp IL, Dash R, Holder D, Schmidt A, Gerst MJ, Tamura T, Tilgmann C, James PF, Johnson R, et al: The Enhanced Contractility of the Phospholamban-deficient Mouse Heart Persists with Aging. Journal of Molecular and Cellular Cardiology. 2001, 33: 1031-1040. 10.1006/jmcc.2001.1370.

Richard S, Perrier E, Fauconnier J, Perrier R, Pereira L, Gomez AM, Benitah JP: 'Ca2+-induced Ca2+ entry' or how the L-type Ca2+ channel remodels its own signalling pathway in cardiac cells. Progress in Biophysics & Molecular Biology. 2006, 90: 118-135.

Bondarenko VE, Szigeti GP, Bett GCL, Kim SJ, Rasmusson RL: Computer model of action potential of mouse ventricular myocytes. American Journal of Physiology-Heart and Circulatory Physiology. 2004, 287: H1378-H1403. 10.1152/ajpheart.00185.2003.

Cortassa S, Aon MA, O'Rourke B, Jacques R, Tseng HJ, Marban E, Winslow RL: A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte. Biophysical Journal. 2006, 91: 1564-1589. 10.1529/biophysj.105.076174.

Luo CH, Rudy Y: A Dynamic-Model of the Cardiac Ventricular Action-Potential .1. Simulations of Ionic Currents and Concentration Changes. Circulation Research. 1994, 74: 1071-1096.

ten Tusscher KHWJ, Noble D, Noble PJ, Panfilov AV: A model for human ventricular tissue. American Journal of Physiology-Heart and Circulatory Physiology. 2004, 286: H1573-H1589. 10.1152/ajpheart.00794.2003.

Antoons G, Mubagwa K, Nevelsteen I, Sipido KR: Mechanisms underlying the frequency dependence of contraction and [Ca2+]i transients in mouse ventricular myocytes. Journal of Physiology-London. 2002, 543: 889-898. 10.1113/jphysiol.2002.025619.

Guo J, Zhan S, Somers J, Westenbroek RE, Catterall WA, Roach DE, Sheldon RS, Lees-Miller JP, Li P, Shimoni Y, Duff HJ: Decrease in density of I-Na is in the common final pathway to heart block in murine hearts overexpressing calcineurin. American Journal of Physiology-Heart and Circulatory Physiology. 2006, 291: H2669-H2679. 10.1152/ajpheart.01247.2005.

Brunet S, Aimond F, Li HL, Guo WN, Eldstrom J, Fedida D, Yamada KA, Nerbonne JM: Heterogeneous expression of repolarizing, voltage-gated K+ currents in adult mouse ventricles. Journal of Physiology-London. 2004, 559: 103-120. 10.1113/jphysiol.2004.063347.

Petrashevskaya NN, Bodi I, Koch SE, Akhter SA, Schwartz A: Effects of alpha(1)-adrenergic stimulation on normal and hypertrophied mouse hearts. Relation to caveolin-3 expression. Cardiovascular Research. 2004, 63: 561-572. 10.1016/j.cardiores.2004.01.026.

Williams IA, Allen DG: Intracellular calcium handling in ventricular myocytes from mdx mice. Am J Physiol Heart Circ Physiol. 2007, 292: H846-855. 10.1152/ajpheart.00688.2006.

Shannon TR, Wang F, Bers DM: Regulation of cardiac sarcoplasmic reticulum ca release by luminal [Ca] and altered gating assessed with a mathematical model. Biophysical Journal. 2005, 89: 4096-4110. 10.1529/biophysj.105.068734.

Wehrens XHT, Lehnart SE, Reiken SR, Marks AR: Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circulation Research. 2004, 94: E61-E70. 10.1161/01.RES.0000125626.33738.E2.

Keizer J, Levine L: Ryanodine receptor adaptation and Ca2+-induced Ca2+ release-dependent Ca2+ oscillations. Biophysical Journal. 1996, 71: 3477-3487. 10.1016/S0006-3495(96)79543-7.

Grueter CE, Abiria SA, Dzhura I, Wu Y, Ham AJ, Mohler PJ, Anderson ME, Colbran RJ: L-type Ca2+ channel facilitation mediated by phosphorylation of the beta subunit by CaMKII. Mol Cell. 2006, 23: 641-650. 10.1016/j.molcel.2006.07.006.

Yao AS, Su Z, Nonaka A, Zubair I, Lu LY, Philipson KD, Bridge JHB, Barry WH: Effects of overexpression of the Na+-Ca2+ exchanger on [Ca2+] transients in murine ventricular myocytes. Circulation Research. 1998, 82: 657-665.

Despa S, Bossuyt J, Han F, Ginsburg KS, Jia LG, Kutchai H, Tucker AL, Bers DM: Phospholemman-phosphorylation mediates the beta-adrenergic effects on Na/K pump function in cardiac myocytes. Circulation Research. 2005, 97: 252-259. 10.1161/01.RES.0000176532.97731.e5.

Brouillette J, Clark RB, Giles WR, Fiset C: Functional properties of K+ currents in adult mouse ventricular myocytes. Journal of Physiology-London. 2004, 559: 777-798.

Guo W, Xu H, London B, Nerbonne JM: Molecular basis of transient outward K+ current diversity in mouse ventricular myocytes. J Physiol. 1999, 521: 587-599. 10.1111/j.1469-7793.1999.00587.x.

Thomas SP, Kucera JP, Bircher-Lehmann L, Rudy Y, Saffitz JE, Kleber AG: Impulse propagation in synthetic strands of neonatal cardiac myocytes with genetically reduced levels of connexin43. Circulation Research. 2003, 92: 1209-1216. 10.1161/01.RES.0000074916.41221.EA.

MacDonell KL, Severson DL, Giles WR: Depression of excitability by sphingosine 1-phosphate in rat ventricular myocytes. Am J Physiol. 1998, 275: H2291-2299.

Wier WG, Egan TM, Lopezlopez JR, Balke CW: Local-Control of Excitation-Contraction Coupling in Rat-Heart Cells. Journal of Physiology-London. 1994, 474: 463-471.

Brittsan AG, Ginsburg KS, Chu GX, Yatani A, Wolska BM, Schmidt AG, Asahi M, MacLennan DH, Bers DM, Kranias EG: Chronic SR Ca2+-ATPase inhibition causes adaptive changes in cellular Ca2+ transport. Circulation Research. 2003, 92: 769-776. 10.1161/01.RES.0000066661.49920.59.

Knollmann BC, Kirchhof P, Sirenko SG, Degen H, Greene AE, Schober T, Mackow JC, Fabritz L, Potter JD, Morad M: Familial hypertrophic cardiomyopathy-linked mutant troponin T causes stress-induced ventricular tachycardia and Ca2+-dependent action potential remodeling. Circulation Research. 2003, 92: 428-436. 10.1161/01.RES.0000059562.91384.1A.

Shannon TR, Ginsburg KS, Bers DM: Reverse mode of the sarcoplasmic reticulum calcium pump and load-dependent cytosolic calcium decline in voltage-clamped cardiac ventricular myocytes. Biophysical Journal. 2000, 78: 322-333. 10.1016/S0006-3495(00)76595-7.

Hund TJ, Kucera JP, Otani NF, Rudy Y: Ionic charge conservation and long-term steady state in the Luo-Rudy dynamic cell model. Biophysical Journal. 2001, 81: 3324-3331. 10.1016/S0006-3495(01)75965-6.

The DOCQS Database. [http://doqcs.ncbs.res.in/]

Hund TJ, Rudy Y: Rate dependence and regulation of action potential and calcium transient in a canine cardiac ventricular cell model. Circulation. 2004, 110: 3168-3174. 10.1161/01.CIR.0000147231.69595.D3.

Jafri MS, Rice JJ, Winslow RL: Cardiac Ca2+ dynamics: The roles of ryanodine receptor adaptation and sarcoplasmic reticulum load. Biophysical Journal. 1998, 74: 1149-1168. 10.1016/S0006-3495(98)77832-4.

Odermatt A, Kurzydlowski K, MacLennan DH: The V-max of the Ca2+-ATPase of cardiac sarcoplasmic reticulum (SERCA2a) is not altered by Ca2+/Calmodulin dependent phosphorylation or by interaction with phospholamban. Journal of Biological Chemistry. 1996, 271: 14206-14213. 10.1074/jbc.271.24.14206.

Bers DM: Excitation-contraction coupling and cardiac contractile force. 2001, Dordrecht; Boston: Kluwer Academic Publishers, 2

Hashambhoy YL, Winslow RL, Greenstein JL: CaMKII-Induced Shift in Modal Gating Explains L-Type Ca2+ Current Facilitation: A Modeling Study. Biophysical Journal. 2009, 96: 1770-1785. 10.1016/j.bpj.2008.11.055.

Li L, Satoh H, Ginsburg KS, Bers DM: The effect of Ca2+-calmodulin-dependent protein kinase II on cardiac excitation-contraction coupling in ferret ventricular myocytes. Journal of Physiology-London. 1997, 501: 17-31. 10.1111/j.1469-7793.1997.017bo.x.

Zuhlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H: Calmodulin supports both inactivation and facilitation of L-type calcium channels. Nature. 1999, 399: 159-162. 10.1038/20200.

Gao L, Blair LAC, Marshall J: CaMKII-independent effects of KN93 and its inactive analog KN 92: Reversible inhibition of L-type calcium channels. Biochemical and Biophysical Research Communications. 2006, 345: 1606-1610. 10.1016/j.bbrc.2006.05.066.

Wu YJ, Colbran RJ, Anderson ME: Calmodulin kinase is a molecular switch for cardiac excitation-contraction coupling. Proceedings of the National Academy of Sciences of the United States of America. 2001, 98: 2877-2881. 10.1073/pnas.051449198.

Wu YJ, Temple J, Zhang R, Dzhura I, Zhang W, Trimble R, Roden DM, Passier R, Olson EN, Colbran RJ, Anderson ME: Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy. Circulation. 2002, 106: 1288-1293. 10.1161/01.CIR.0000027583.73268.E7.