Regulation of endothelial permeability and transendothelial migration of cancer cells by tropomyosin-1 phosphorylation
Tóm tắt
Loss of endothelial cell integrity and selective permeability barrier is an early event in the sequence of oxidant-mediated injury and may result in atherosclerosis, hypertension and facilitation of transendothelial migration of cancer cells during metastasis. We already reported that endothelial cell integrity is tightly regulated by the balanced co-activation of p38 and ERK pathways. In particular, we showed that phosphorylation of tropomyosin-1 (tropomyosin alpha-1 chain = Tm1) at Ser283 by DAP kinase, downstream of the ERK pathway might be a key event required to maintain the integrity and normal functions of the endothelium in response to oxidative stress. Endothelial permeability was assayed by monitoring the passage of Dextran-FITC through a tight monolayer of HUVECs grown to confluence in Boyden chambers. Actin and Tm1 dynamics and distribution were evaluated by immunofluorescence. We modulated the expression of Tm1 by siRNA and lentiviral-mediated expression of wild type and mutated forms of Tm1 insensitive to the siRNA. Transendothelial migration of HT-29 colon cancer cells was monitored in Boyden chambers similarly as for permeability. We provide evidence indicating that Tm1 phosphorylation at Ser283 is essential to regulate endothelial permeability under oxidative stress by modulating actin dynamics. Moreover, the transendothelial migration of colon cancer cells is also regulated by the phosphorylation of Tm1 at Ser283. Our finding strongly support the role for the phosphorylation of endothelial Tm1 at Ser283 to prevent endothelial barrier dysfunction associated with oxidative stress injury.
Tài liệu tham khảo
Lee WL, Liles WC: Endothelial activation, dysfunction and permeability during severe infections. Curr Opin Hematol. 2011, 18 (3): 191-196. 10.1097/MOH.0b013e328345a3d1.
Winn RK, Harlan JM: The role of endothelial cell apoptosis in inflammatory and immune diseases. J Thromb Haemost. 2005, 3 (8): 1815-1824. 10.1111/j.1538-7836.2005.01378.x.
Speyer CL, Ward PA: Role of endothelial chemokines and their receptors during inflammation. J Invest Surg. 2011, 24 (1): 18-27. 10.3109/08941939.2010.521232.
Lamalice L, Le Boeuf F, Huot J: Endothelial cell migration during angiogenesis. Circ Res. 2007, 100 (6): 782-794. 10.1161/01.RES.0000259593.07661.1e.
Tremblay PL, Auger FA, Huot J: Regulation of transendothelial migration of colon cancer cells by E-selectin-mediated activation of p38 and ERK MAP kinases. Oncogene. 2006, 25 (50): 6563-6573. 10.1038/sj.onc.1209664.
Laferriere J, Houle F, Taher MM, Valerie K, Huot J: Transendothelial migration of colon carcinoma cells requires expression of E-selectin by endothelial cells and activation of stress-activated protein kinase-2 (SAPK2/p38) in the tumor cells. J Biol Chem. 2001, 276 (36): 33762-33772. 10.1074/jbc.M008564200.
De Backer D, Donadello K, Favory R: Link between coagulation abnormalities and microcirculatory dysfunction in critically ill patients. Curr Opin Anaesthesiol. 2009, 22 (2): 150-154. 10.1097/ACO.0b013e328328d1a1.
Schulz E, Gori T, Munzel T: Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res. 2011, 34 (6): 665-673. 10.1038/hr.2011.39.
Hu Q, Ziegelstein RC: Hypoxia/reoxygenation stimulates intracellular calcium oscillations in human aortic endothelial cells. Circulation. 2000, 102 (20): 2541-2547. 10.1161/01.CIR.102.20.2541.
Millar TM, Phan V, Tibbles LA: ROS generation in endothelial hypoxia and reoxygenation stimulates MAP kinase signaling and kinase-dependent neutrophil recruitment. Free Radic Biol Med. 2007, 42 (8): 1165-1177. 10.1016/j.freeradbiomed.2007.01.015.
Seal JB, Gewertz BL: Vascular dysfunction in ischemia-reperfusion injury. Ann Vasc Surg. 2005, 19 (4): 572-584. 10.1007/s10016-005-4616-7.
Sakamoto N, Ishibashi T, Sugimoto K, Sawamura T, Sakamoto T, Inoue N, Saitoh S, Kamioka M, Uekita H, Ohkawara H, et al: Role of LOX-1 in monocyte adhesion-triggered redox, Akt/eNOS and Ca2+ signaling pathways in endothelial cells. J Cell Physiol. 2009, 220 (3): 706-715. 10.1002/jcp.21818.
Victor VM, Rocha M, Sola E, Banuls C, Garcia-Malpartida K, Hernandez-Mijares A: Oxidative stress, endothelial dysfunction and atherosclerosis. Curr Pharm Des. 2009, 15 (26): 2988-3002. 10.2174/138161209789058093.
Touyz RM: Oxidative stress and vascular damage in hypertension. Curr Hypertens Rep. 2000, 2 (1): 98-105. 10.1007/s11906-000-0066-3.
Harrison D, Griendling KK, Landmesser U, Hornig B, Drexler H: Role of oxidative stress in atherosclerosis. Am J Cardiol. 2003, 91 (3A): 7A-11A.
Gout S, Huot J: Role of cancer microenvironmentin metastasis: Focus on colon cancer. Cancer Microenvironment. 2008, 1 (1): 69-83. 10.1007/s12307-008-0007-2.
Bogatcheva NV, Verin AD: The role of cytoskeleton in the regulation of vascular endothelial barrier function. Microvasc Res. 2008, 76 (3): 202-207. 10.1016/j.mvr.2008.06.003.
Houle F, Huot J: Dysregulation of the endothelial cellular response to oxidative stress in cancer. Mol Carcinog. 2006, 45 (6): 362-367. 10.1002/mc.20218.
Houle F, Rousseau S, Morrice N, Luc M, Mongrain S, Turner CE, Tanaka S, Moreau P, Huot J: Extracellular signal-regulated kinase mediates phosphorylation of tropomyosin-1 to promote cytoskeleton remodeling in response to oxidative stress: impact on membrane blebbing. Mol Biol Cell. 2003, 14 (4): 1418-1432. 10.1091/mbc.E02-04-0235.
Huot J, Houle F, Marceau F, Landry J: Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathway in vascular endothelial cells. Circ Res. 1997, 80 (3): 383-392. 10.1161/01.RES.80.3.383.
Houle F, Poirier A, Dumaresq J, Huot J: DAP kinase mediates the phosphorylation of tropomyosin-1 downstream of the ERK pathway, which regulates the formation of stress fibers in response to oxidative stress. J Cell Sci. 2007, 120 (Pt 20): 3666-3677.
Naga Prasad SV, Jayatilleke A, Madamanchi A, Rockman HA: Protein kinase activity of phosphoinositide 3-kinase regulates beta-adrenergic receptor endocytosis. Nat Cell Biol. 2005, 7 (8): 785-796. 10.1038/ncb1278.
Karam CN, Warren CM, Rajan S, de Tombe PP, Wieczorek DF, Solaro RJ: Expression of tropomyosin-kappa induces dilated cardiomyopathy and depresses cardiac myofilament tension by mechanisms involving cross-bridge dependent activation and altered tropomyosin phosphorylation. J Muscle Res Cell Motil. 2011, 31 (5–6): 315-322.
Somara S, Pang H, Bitar KN: Agonist-induced association of tropomyosin with protein kinase Calpha in colonic smooth muscle. Am J Physiol Gastrointest Liver Physiol. 2005, 288 (2): G268-G276. 10.1152/ajpgi.00330.2004.
Pin AL, Houle F, Fournier P, Guillonneau M, Paquet ER, Simard MJ, Royal I, Huot J: Annexin-1-mediated endothelial cell migration and angiogenesis are regulated by VEGF-induced inhibition of miR-196a expression. J Biol Chem. 2012
Pin AL, Houle F, Guillonneau M, Paquet ER, Simard MJ, Huot J: miR-20a represses endothelial cell migration by targeting MKK3 and inhibiting p38 MAP kinase activation in response to VEGF. Angiogenesis. 2012
Chuenkitiyanon S, Pengsuparp T, Jianmongkol S: Protective effect of quercetin on hydrogen peroxide-induced tight junction disruption. Int J Toxicol. 29 (4): 418-424.
Huot J, Houle F, Rousseau S, Deschesnes RG, Shah GM, Landry J: SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J Cell Biol. 1998, 143 (5): 1361-1373. 10.1083/jcb.143.5.1361.
Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR: PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem. 1995, 270 (46): 27489-27494. 10.1074/jbc.270.46.27489.
Aghajanian A, Wittchen ES, Allingham MJ, Garrett TA, Burridge K: Endothelial cell junctions and the regulation of vascular permeability and leukocyte transmigration. J Thromb Haemost. 2008, 6 (9): 1453-1460. 10.1111/j.1538-7836.2008.03087.x.
McKenzie JA, Ridley AJ: Roles of Rho/ROCK and MLCK in TNF-alpha-induced changes in endothelial morphology and permeability. J Cell Physiol. 2007, 213 (1): 221-228. 10.1002/jcp.21114.
Wei XN, Han BC, Zhang JX, Liu XH, Tan CY, Jiang YY, Low BC, Tidor B, Chen YZ: An integrated mathematical model of thrombin-, histamine-and VEGF-mediated signalling in endothelial permeability. BMC Syst Biol. 2012, 5: 112-
Boer C, van Nieuw Amerongen GP, Groeneveld AB, Scheffer GJ, de Lange JJ, Westerhof N, van Hinsbergh VW, Sipkema P: Smooth muscle F-actin disassembly and RhoA/Rho-kinase signaling during endotoxin-induced alterations in pulmonary arterial compliance. Am J Physiol Lung Cell Mol Physiol. 2004, 287 (4): 649-655. 10.1152/ajplung.00219.2003.
Waschke J, Curry FE, Adamson RH, Drenckhahn D: Regulation of actin dynamics is critical for endothelial barrier functions. Am J Physiol Heart Circ Physiol. 2005, 288 (3): H1296-1305.
Wojciak-Stothard B, Ridley AJ: Rho GTPases and the regulation of endothelial permeability. Vascul Pharmacol. 2002, 39 (4–5): 187-199.
Heasman SJ, Ridley AJ: Multiple roles for RhoA during T cell transendothelial migration. Small GTPases. 1 (3): 174-179.
Heasman SJ, Carlin LM, Cox S, Ng T, Ridley AJ: Coordinated RhoA signaling at the leading edge and uropod is required for T cell transendothelial migration. J Cell Biol. 190 (4): 553-563.
Gout S, Tremblay PL, Huot J: Selectins and selectin ligands in extravasation of cancer cells and organ selectivity of metastasis. Clin Exp Metastasis. 2008, 25 (4): 335-344. 10.1007/s10585-007-9096-4.
Sahni A, Arevalo MT, Sahni SK, Simpson-Haidaris PJ: The VE-cadherin binding domain of fibrinogen induces endothelial barrier permeability and enhances transendothelial migration of malignant breast epithelial cells. Int J Cancer. 2009, 125 (3): 577-584. 10.1002/ijc.24340.
Mierke CT: Cancer cells regulate biomechanical properties of human microvascular endothelial cells. J Biol Chem. 2012, 286 (46): 40025-40037.