Điều hòa tự tiêu hoại như một lựa chọn điều trị trong glioblastoma

Springer Science and Business Media LLC - Tập 26 - Trang 574-599 - 2021
Amanda J. Manea1, Swapan K. Ray1
1Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, USA

Tóm tắt

Khoảng ba trên một trăm nghìn người được chẩn đoán mắc glioblastoma đa hình, hay còn gọi là glioblastoma, đây là loại khối u não nguyên phát phổ biến nhất ở người lớn. Với tiên lượng ảm đạm chỉ hơn một năm, việc nhận được chẩn đoán glioblastoma thường dẫn đến cái chết. Một bước tiến lớn trong điều trị bệnh này đã được thực hiện gần hai thập kỷ trước khi tác nhân hóa trị liệu kiềm hóa temozolomide (TMZ) được kết hợp với xạ trị (RT). Kể từ đó, ít tiến bộ đã được thực hiện. Các liệu pháp tập trung vào việc điều hòa quá trình tự tiêu hoại, một quá trình quan trọng điều chỉnh cân bằng tế bào, đã được phát triển nhằm ngăn chặn sự tiến triển của glioblastoma. Vai trò kép của tự tiêu hoại (sinh tồn tế bào hoặc chết tế bào) trong glioblastoma đã dẫn đến sự phát triển của các chất ức chế và kích thích tự tiêu hoại, hoạt động như liệu pháp đơn hoặc như một phần của liệu pháp kết hợp để gây ra cái chết tế bào, lão hóa tế bào và chống lại khả năng của các tế bào gốc glioblastoma (GSCs) trong việc khởi phát tái phát khối u. Sự phong phú của các con đường tế bào tác động lên việc điều hòa tự tiêu hoại đã tạo ra sự tranh chấp giữa hai nhóm: những người sử dụng ức chế tự tiêu hoại và những người sử dụng kích thích tự tiêu hoại để kiểm soát sự phát triển của glioblastoma. Chúng tôi thảo luận về lý do sử dụng các liệu pháp chính hiện tại, cơ chế phân tử của chúng trong việc điều hòa tự tiêu hoại ở glioblastoma và GSCs, tiềm năng của chúng trong việc tiến bộ trong việc chống lại sự tiến triển của glioblastoma, và có thể có những thiếu sót của chúng. Những thiếu sót này có thể thúc đẩy sự đổi mới về hệ thống cung cấp và liệu pháp mới liên quan đến TMZ kết hợp với một tác nhân khác nhằm mở đường cho tiêu chuẩn vàng mới trong điều trị glioblastoma.

Từ khóa


Tài liệu tham khảo

Witthayanuwat S, Montien P, Supaadirek C et al (2018) Survival analysis of glioblastoma multiforme. Asian Pac J Cancer Prev 19:2613–2617. https://doi.org/10.22034/APJCP.2018.19.9.2613 Stupp R, Mason W, Bent M et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. https://doi.org/10.1056/NEJMoa043330 Thomas A, Tanaka M, Trepel J et al (2017) Temozolomide in the era of precision medicine. Cancer Res 77:823–826. https://doi.org/10.1158/0008-5472.CAN-16-2983 Hegi M, Diserens A, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003. https://doi.org/10.1056/NEJMoa043331 Hottinger A, Stupp R, Homicscko K (2014) Standards of care and novel approaches in the management of glioblastoma multiforme. Chin J Cancer 33:32–39. https://doi.org/10.5732/cjc.013.10207 Hunter C, Smith R, Cahill D et al (2006) A hypermutation phenotype and somatic MSH6 mutations in recurrent human malignant gliomas after alkylator chemotherapy. Cancer Res 66:3987–3991. https://doi.org/10.1158/0008-5472.CAN-06-0127 Singh S, Hawkins C, Clarke I et al (2004) Identification of human brain tumor initiating cells. Nature 432:396–401. https://doi.org/10.1038/nature03128 Patel A, Tirosh I, Trombetta J et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401. https://doi.org/10.1126/science.1254257 Furnari F, Cloughesy T, Cavenee W et al (2015) Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma. Nat Rev Cancer 15:302–310. https://doi.org/10.1038/nrc3918 Oberoi R, Parrish K, Sio T et al (2016) Strategies to improve delivery of anticancer drugs across the blood–brain barrier to treat glioblastoma. Neuro Oncol 18:27–36. https://doi.org/10.1093/neuonc/nov164 Lathia J, Mack S, Mulkearns-Hubert E et al (2015) Cancer stem cells in glioblastoma. Genes Dev 29:1203–1217. https://doi.org/10.1101/gad.261982.115 Ciechomska I (2018) The role of autophagy in neoplastic cells: characteristics of the interdependencies between autophagy and apoptosis; modulation of autophagy as a new therapeutic strategy in the treatment of gliomas. Postep Biochem 64:2. https://doi.org/10.18388/pb.2018_121 Goldhoff P, Clarke J, Smirnov I et al (2012) Clinical stratification of glioblastoma based on alterations in retinoblastoma tumor suppressor protein (RB1) and association with the proneural subtype. J Neuropathol Exp Neurol 71:83–89. https://doi.org/10.1097/NEN.0b013e31823fe8f1 Brennan C, Verhaak R, McKenna A et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462–477. https://doi.org/10.1016/j.cell.2013.09.034 Aldape K, Zadeh G, Mansouri S et al (2015) Glioblastoma: pathology, molecular mechanisms and markers. Acta Neuropathol 129:829–848. https://doi.org/10.1007/s00401-015-1432-1 Danial N, Hockenbery D (2018) Cell death. In: Hoffman R (ed) Hematology: basic principles and practice, vol 18, 7th edn. Elsevier, Mumbai, pp 186–196 Huang Z, Zhou L, Chen Z et al (2016) Stress management by autophagy: implications for chemoresistance. Int J Cancer 139:23–32. https://doi.org/10.1002/ijc.29990 Yang K, Niu L, Bai Y et al (2019) Glioblastoma: targeting the autophagy in tumorigenesis. Brain Res Bull 153:334–340. https://doi.org/10.1016/j.brainresbull.2019.09.012 Shimizu S, Yoshida T, Tsujioka M et al (2014) Autophagic cell death and cancer. Int J Mol Sci 15:3145–3153. https://doi.org/10.3390/ijms15023145 Kimmelman AC, White E (2017) Autophagy and tumor metabolism. Cell Metab 25:1037–1043. https://doi.org/10.1016/j.cmet.2017.04.004 Martinez-Vicente M, Cuervo A (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet 6:352–361. https://doi.org/10.1016/S1474-4422(07)70076-5 Colella B, Faienza F, Bartolomeo S (2019) EMT regulation by autophagy: a new perspective in glioblastoma biology. Cancers (Basel) 11:312. https://doi.org/10.3390/cancers11030312 Galluzzi L, Pietrocola F, Bravo-San Pedro J et al (2015) Autophagy in malignant transformation and cancer progression. EMBO J 34:856–880. https://doi.org/10.15252/embj.201490784 Amaravadi R, Lippincott-Schwartz J, Yin X et al (2011) Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 17:654–666. https://doi.org/10.1158/1078-0432.CCR-10-2634 López-Otín C, Blasco M, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217. https://doi.org/10.1016/j.cell.2013.05.039 Boya P, Reggiori F, Codogno P (2013) Emerging regulation and functions of autophagy. Nat Cell Biol 15:713–720. https://doi.org/10.1038/ncb2788 Laplante M, Sabatini D (2009) mTOR signaling at a glance. J Cell Sci 122:3589–3594. https://doi.org/10.1242/jcs.051011 Wong P, Puente C, Ganley I et al (2013) The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy 9:124–137. https://doi.org/10.4161/auto.23323 Ohgaki H, Kleihues P (2011) Genetic profile of astrocytic and oligodendroglial gliomas. Brain Tumor Pathol 28:177–183. https://doi.org/10.1007/s10014-011-0029-1 Frattini V, Trifonov V, Chan J et al (2013) The integrated landscape of driver genomic alterations in glioblastoma. Nat Genet 45:1141–1149. https://doi.org/10.1038/ng.2734 Cordani M, Butera G, Pacchiana R et al (2017) Molecular interplay between mutant p53 proteins and autophagy in cancer cells. Biochim Biophys Acta Rev Cancer 1867:19–28. https://doi.org/10.1016/j.bbcan.2016.11.003 Jutten B, Rouschop K (2014) EGFR signaling and autophagy dependence of growth, survival, and therapy resistance. Cell Cycle 13:42–51. https://doi.org/10.4161/cc.27518 Mathew R, Karp C, Beaudoin B et al (2009) Autophagy suppresses tumorigenesis through elimination of p62. Cell 137:1062–1075. https://doi.org/10.1016/j.cell.2009.03.048 Chen J, Zhang P, Chen W et al (2015) ATM-mediated PTEN phosphorylation promotes PTEN nuclear translocation and autophagy in response to DNA-damaging agents in cancer cells. Autophagy 11:239–252. https://doi.org/10.1080/15548627.2015.1009767 Padmakrishnan CJ, Easwer HV, Vijayakurup V et al (2019) High LC3/Beclin expression correlates with poor survival in glioma: a definitive role for autophagy as evidenced by in vitro autophagic flux. Pathol Oncol Res 25:137–148. https://doi.org/10.1007/s12253-017-0310-7 Hou J, Han Z, Jing Y et al (2013) Autophagy prevents irradiation injury and maintains stemness through decreasing ROS generation in mesenchymal stem cells. Cell Death Dis 4:884. https://doi.org/10.1038/cddis.2013.338 García-Prat L, Martínez-Vicente M, Periguero E et al (2016) Autophagy maintains stemness by preventing senescence. Nature 529:37–42. https://doi.org/10.1038/nature16187 Martinez-Outschoorn U, Prisco M, Ertel A et al (2011) Ketones and lactate increase cancer cell “stemness”, driving recurrence, metastasis and poor clinical outcome in breast cancer: achieving personalized medicine via metabolo-genomics. Cell Cycle 10:1271–1286. https://doi.org/10.4161/cc.10.8.15330 Ricci-Vitiani L, Pallini R, Biffoni M et al (2010) Tumor vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828. https://doi.org/10.1038/nature09557 Galavotti S, Bartesaghi S, Faccenda D et al (2013) The autophagy-associated factors DRAM1 and p62 regulate cell migration and invasion in glioblastoma stem cells. Oncogene 32:699–712. https://doi.org/10.1038/onc.2012.111 Katayama M, Kawaguchi T, Berger M et al (2007) DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells. Cell Death Differ 14:548–558. https://doi.org/10.1038/sj.cdd.4402030 Natsumeda M, Aoki H, Miyahara H et al (2011) Induction of autophagy in temozolomide treated malignant gliomas. Neuropathology 31:486–493. https://doi.org/10.1111/j.1440-1789.2010.01197.x Filippi-Chiela E, Bueno e Silva M, Thomé M, et al (2015) Single-cell analysis challenges the connection between autophagy and senescence induced by DNA damage. Autophagy 11:1099–1113. https://doi.org/10.1080/15548627.2015.1009795 Lefranc F, Kiss R (2006) Autophagy, the Trojan horse to combat glioblastomas. Neurosurg Focus 20:E7. https://doi.org/10.3171/foc.2006.20.4.4 Lum J, Bauer D, Kong M et al (2005) Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120:237–248. https://doi.org/10.1016/j.cell.2004.11.046 Chen J, Li Y, Yu T et al (2012) A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 488:522–526. https://doi.org/10.1038/nature11287 Auffinger B, Tobias A, Han Y et al (2014) Conversion of differentiated cancer cells into cancer stem-like cells in a glioblastoma model after primary chemotherapy. Cell Death Differ 21:1119–1131. https://doi.org/10.1038/cdd.2014.31 Zhu H, Wang D, Liu Y et al (2013) Role of the hypoxia-inducible factor-1 alpha induced autophagy in the conversion of the non-stem pancreatic cancer cells into CD133+ pancreatic cancer stem-like cells. Cancer Cell Int 13:119. https://doi.org/10.1186/1475-2867-13-119 Koukourakis MI, Mitrakas AG, Giatromanolakis A (2016) Therapeutic interactions of autophagy with radiation and temozolomide in glioblastoma: evidence and issues to resolve. Br J Cancer 114:485–496. https://doi.org/10.1038/bjc.2016.19 Ogier-Denis E, Codogno P (2003) Autophagy: a barrier or an adaptive response to cancer. Biochim Biophys Acta 1603:113–128. https://doi.org/10.1016/s0304-419x(03)00004-0 Kanzawa T, Germano IM, Komata T et al (2004) Role of autophagy in temozolomide-induced cytotoxicity for malignant glioma cells. Cell Death Differ 11:448–457. https://doi.org/10.1038/sj.cdd.4401359 Friedman HS, Prados MD, Wen PY et al (2009) Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. J Clin Oncol 27:4733–4740. https://doi.org/10.1200/JCO.2008.19.8721 Kreisl TN, Kim L, Moore K et al (2009) Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. J Clin Oncol 27:740–745. https://doi.org/10.1200/JCO.2008.16.3055 Nagane M, Nishikawa R, Narita Y et al (2012) Phase II study of single-agent bevacizumab in Japanese patients with recurrent malignant glioma. Jpn J Clin Oncol 42:887–895. https://doi.org/10.1093/jjco/hys121 Vredenburgh J, Desjardins A, Herndon J II et al (2007) Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol 25:4722–4729. https://doi.org/10.1200/JCO.2007.12.2440 Bao S, Wu Q, Sathornsumetee S et al (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66:7843–7848. https://doi.org/10.1158/0008-5472.CAN-06-1010 Jahangiri A, Flanigan P, Aghi MK (2016) Antiangiogenic therapy for glioblastoma. In: Brem S, Abdullah KG (eds) Glioblastoma, vol 10. Elsevier, Philadelphia, pp 143–146 Hombach-Klonisch S, Mehrpour M, Shojaei S et al (2018) Glioblastoma and chemoresistance to alkylating agents: involvement of apoptosis, autophagy, and unfolded protein response. Pharmacol Ther 184:13–41. https://doi.org/10.1016/j.pharmthera.2017.10.017 Hu Y-L, DeLay M, Jahangiri A et al (2012) Hypoxia-induced autophagy promotes tumor cell survival and adaptation to antiangiogenic treatment in glioblastoma. Cancer Res 72:1773–1783. https://doi.org/10.1158/0008-5472.CAN-11-3831 Clark AJ, Lamborn KR, Butowski NA et al (2012) Neurosurgical management and prognosis of patients with glioblastoma that progresses during bevacizumab treatment. Neurosurgery 70:361–370. https://doi.org/10.1227/NEU.0b013e3182314f9d Pascolo S (2016) Time to use a dose of chloroquine as an adjuvant to anti-cancer chemotherapies. Eur J Pharmacol 771:139–144. https://doi.org/10.1016/j.ejphar.2015.12.017 Lee SW, Kim H-K, Lee N-H et al (2015) The synergistic effect of combination temozolomide and chloroquine treatment is dependent on autophagy formation and p53 status in glioma cells. Cancer Lett 360:195–204. https://doi.org/10.1016/j.canlet.2015.02.012 Rosenfeld MR, Ye X, Supko JG et al (2014) A phase I/II trial of hydroxychloroquine in conjunction with radiation therapy and concurrent and adjuvant temozolomide in patients with newly diagnosed glioblastoma multiforme. Autophagy 10:1359–1368. https://doi.org/10.4161/auto.28984 Braicu C, Zanoaga O, Zimta A-A et al (2020) Natural compounds modulate the crosstalk between apoptosis- and autophagy-regulated signaling pathways: controlling the uncontrolled expansion of tumor cells. Semin Cancer Biol. https://doi.org/10.1016/j.semcancer.2020.05.015 Lin S-R, Change C-H, Hsu C-F et al (2019) Natural compounds as potential adjuvants to cancer therapy: preclinical evidence. Br J Pharmacol 177:1409–1423. https://doi.org/10.1111/bph.14816 Hasima N, Ozpolat B (2014) Regulation of autophagy by polyphenolic compounds as a potential therapeutic strategy for cancer. Cell Death Dis 5:e1509. https://doi.org/10.1038/cddis.2014.467 Zhou J, Li G, Zheng Y et al (2015) A novel autophagy/mitophagy inhibitor liensinine sensitizes breast cancer cells to chemotherapy through DNM1L-mediated mitochondrial fission. Autophagy 8:1259–1279. https://doi.org/10.1080/15548627.2015.1056970 Taylor MA, Khathayer F, Ray SK (2019) Quercetin and sodium butyrate synergistically increase apoptosis in rat C6 and human T98G glioblastoma cells through inhibition of autophagy. Neurochem Res 44:1715–1725. https://doi.org/10.1007/s11064-019-02802-8 Chakrabarti M, Ray SK (2015) Anti-tumor activities of luteolin and silibinin in glioblastoma cells: overexpression of miR-7-1-3p augmented luteolin and silibinin to inhibit autophagy and induce apoptosis in glioblastoma in vivo. Apoptosis 21:312–328. https://doi.org/10.1007/s10495-015-1198-x Chakrabarti M, Klionsky DJ, Ray SK (2016) miR-30e blocks autophagy and acts synergistically with proanthocyanidin for inhibition of AVEN and BIRC6 to increase apoptosis in glioblastoma stem cells and glioblastoma SNB19 cells. PLoS ONE 11:e0158537. https://doi.org/10.1371/journal.pone.0158537 Racoma IO, Meisen WH, Wang Q-E et al (2013) Thymoquinone inhibits autophagy and induces cathepsin-mediated, caspase-independent cell death in glioblastoma cells. PLoS ONE 8:e72882. https://doi.org/10.1371/journal.pone.0072882 Pazhouhi M, Sariri R, Rabzia A et al (2016) Thymoquinone synergistically potentiates temozolomide cytotoxicity through the inhibition of autophagy in U87MG cell line. Iran J Basic Med Sci 19:890–898. https://doi.org/10.22038/IJBMS.2016.7472 Lin C-J, Lee C-C, Shih Y-L et al (2012) Resveratrol enhances the therapeutic effect of temozolomide against malignant glioma in vitro and in vivo by inhibiting autophagy. Free Radic Biol Med 52:377–391. https://doi.org/10.1016/j.freeradbiomed.2011.10.487 Boridy S, Le PU, Petrecca K et al (2014) Celastrol targets proteostasis and acts synergistically with a heat-shock protein 90 inhibitor to kill human glioblastoma cells. Cell Death Dis 5:e1216. https://doi.org/10.1038/cddis.2014.182 Yuan G, Yan S-F, Xue H et al (2014) Cucurbitacin I induces protective autophagy in glioblastoma in vitro and in vivo. J Biol Chem 289:10607–10619. https://doi.org/10.1074/jbc.M113.528760 Liu A-J, Wang S-H, Chen K-C et al (2013) Evodiamine, a plant alkaloid, induces calcium/JNK-mediated autophagy and calcium-mitochondria-mediated apoptosis in human glioblastoma cells. Chemico-biol Interact 205:20–28. https://doi.org/10.1016/j.cbi.2013.06.004 Wang J, Qi Q, Feng Z et al (2016) Berberine induces autophagy in glioblastoma by targeting the AMPK/mTOR/ULK1-pathway. Oncotarget 7:66944–66958. https://doi.org/10.18632/oncotarget.11396 Singletary K, Milner J (2008) Diet, autophagy, and cancer: a review. Cancer Epidemiol Biomark Prev 17:1596–1610. https://doi.org/10.1158/1055-9965.EPI-07-2917 Shen S, Zhang Y, Zhang R et al (2014) Ursolic acid induces autophagy in U87MG cells via ROS-dependent endoplasmic reticulum stress. Chemico-biol Interact 218:28–41. https://doi.org/10.1016/j.cbi.2014.04.017 Jing Z, Han W, Sui X et al (2015) Interaction of autophagy with microRNAs and their potential therapeutic implications in human cancers. Cancer Lett 356:332–338. https://doi.org/10.1016/j.canlet.2014.09.039 Ma B, Yuan Z, Zhang L et al (2017) Long non-coding RNA AC023115.3 suppresses chemoresistance of glioblastoma by reducing autophagy. Biochim Biophys Acta 1864:1393–1404. https://doi.org/10.1016/j.bbamcr.2017.05.008 Yang AI, Maus MV, O’Rourke DM (2016) General principles of immunotherapy for glioblastoma. In: Brem S, Abdullah KG (eds) Glioblastoma, vol 19. Elsevier, Philadelphia, pp 237–246 Kaminska B, Ciechomska IA, Cyranowski S (2020) Chapter 3—autophagy in brain tumor immune evasion and responses to immunotherapy. In: Chouaib S (ed) Autophagy in immune response: impact on cancer immunotherapy. Academic, London, pp 29–52 Li T-F, Xu Y-H, Li K et al (2019) Doxorubicin–polyglycerol–nanodiamond composites stimulate glioblastoma cell immunogenicity through activation of autophagy. Acta Biomater 86:381–394. https://doi.org/10.1016/j.actbio.2019.01.020 Zhao L, Xu Y-H, Akasaka T et al (2014) Polyglycerol-coated nanodiamond as a macrophage-evading platform for selective drug delivery in cancer cells. Biomaterials 35:5393–5406. https://doi.org/10.1016/j.biomaterials.2014.03.041 Liu J-R, Yu C-W, Hung P-Y et al (2019) High-selective HDAC6 inhibitor promotes HDAC6 degradation following autophagy modulation and enhances antitumor immunity in glioblastoma. Biochem Pharmacol 163:458–471. https://doi.org/10.1016/j.bcp.2019.03.023 Hottinger AF, Abdullah KG, Stupp R (2016) Current standards of care in glioblastoma therapy. In: Brem S, Abdullah KG (eds) Glioblastoma, vol 6. Elsevier, Philadelphia, pp 73–80 Stupp R, Taillibert S, Kanner AA et al (2015) Maintenance therapy with tumor-treating fields plus temozolomide vs temozolomide alone for glioblastoma: a randomized clinical trial. JAMA 314:2535–2543. https://doi.org/10.1001/jama.2015.16669 Silginer M, Weller M, Stupp R et al (2017) Biological activity of tumor-treating fields in preclinical glioma models. Cell Death Dis 8:e2753. https://doi.org/10.1038/cddis.2017.171 Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet 7:606–619. https://doi.org/10.1038/nrg1879 Wu Y-T, Tan H-L, Shui G et al (2010) Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem 285:10850–10861. https://doi.org/10.1074/jbc.M109.080796 Zhang X, Li W, Wang C et al (2014) Inhibition of autophagy enhances apoptosis induced by proteasome inhibitor bortezomib in human glioblastoma U87 and U251 cells. Mol Cell Biochem 385:265–275. https://doi.org/10.1007/s11010-013-1835-z Wang J, Qi Q, Zhou Q et al (2018) Inhibition of glioma growth by flavokawain B is mediated through endoplasmic reticulum stress induced autophagy. Autophagy 14:2007–2022. https://doi.org/10.1080/15548627.2018.1501133 Jin X, Liu Y, Liu X et al (2014) Role of autophagy in high linear energy transfer radiation-induced cytotoxicity to tumor cells. Cancer Sci 105:770–778. https://doi.org/10.1111/cas.12422 Kim J, Lee J-W, Kim S-I et al (2011) Thrombin-induced migration and matrix metalloproteinase-9 expression are regulated by MAPK and PI3K pathways in C6 glioma cells. Korean J Physiol Pharmacol 15:211–216. https://doi.org/10.4196/kjpp.2011.15.4.211 Blommaart EF, Krause U, Schellens JP et al (1997) The phosphatidylinositol 3-kinase inhibitors wortmannin and LY294002 inhibit autophagy in isolated rat hepatocytes. Eur J Biochem 243:240–246. https://doi.org/10.1111/j.1432-1033.1997.0240a.x Mahadevan D, Chiorean EG, Harris WB et al (2012) Phase I pharmacokinetic and pharmacodynamic study of the pan-PI3K/mTORC vascular targeted pro-drug SF1126 in patients with advanced solid tumours and B-cell malignancies. Eur J Cancer. https://doi.org/10.1016/j.ejca.2012.06.027 Fedrigo CA, Grivicich I, Schunemann DP et al (2011) Radioresistance of human glioma spheroids and expression of HSP70, p53, and EGFR. Radiat Oncol 6:156. https://doi.org/10.1186/1748-717X-6-156 Ryabaya OO, Inshakov AN, Egorova AV et al (2017) Autophagy inhibitors chloroquine and LY294002 enhance temozolomide cytotoxicity on cutaneous melanoma cell lines in vitro. Anticancer Drugs 28:307–315. https://doi.org/10.1097/CAD.0000000000000463 Deng L, Lei Y, Liu R et al (2013) Pyrvinium targets autophagy addiction to promote cancer cell death. Cell Death Dis 4:e614. https://doi.org/10.1038/cddis.2013.142 Venugopal C, Hallett R, Vora P et al (2015) Pyrvinium targets CD133 in human glioblastoma brain tumor-initiating cells. Clin Cancer Res 21:5324–5337. https://doi.org/10.1158/1078-0432.CCR-14-3147 Li Y, Yao J, Han C et al (2016) Quercetin, inflammation, and immunity. Nutrients 8:167. https://doi.org/10.3390/nu8030167 Kim H, Moon JY, Ahn KS et al (2013) Quercetin induces mitochondrial mediated apoptosis and protective autophagy in human glioblastoma U373MG cells. Oxid Med Cell Longev. https://doi.org/10.1155/2013/596496 Egan DF, Chun MG, Vamos M et al (2015) Small molecule inhibition of autophagy kinase ULK1 and identification of ULK1 substrates. Mol Cell 59:285–297. https://doi.org/10.1016/j.molcel.2015.05.031 Mauthe M, Orhon I, Rocchi C et al (2018) Chloroquine inhibits autophagy flux by decreasing autophagosome–lysosome fusion. Autophagy 14:1435–1455. https://doi.org/10.1080/15548627.2018.1474314 Cristofori AD, Ferrero S, Bertolini I et al (2015) The vacuolar H+ ATPase is a novel therapeutic target for glioblastoma. Oncotarget 6:17514–17531. https://doi.org/10.18632/oncotarget.4239 Liu L-Q, Wang S-B, Shao Y-F et al (2019) Hydroxychloroquine potentiates the anti-cancer effect of bevacizumab on glioblastoma via the inhibition of autophagy. Biomed Pharmacother 118:109339. https://doi.org/10.1016/j.biopha.2019.109339 Michaelides M, Stover N, Francis P et al (2011) Retinal toxicity associated with hydroxychloroquine and chloroquine. Arch Ophthalmol 129:30–39. https://doi.org/10.1001/archophthalmol.2010.321 Trejo-Solís C, Serrano-Garcia N, Escamilla-Ramírez Á et al (2018) Autophagic and apoptotic pathways as targets for chemotherapy in glioblastoma. Int J Mol Sci 19:3773. https://doi.org/10.3390/ijms19123773 Voldborg BR, Damstrup L, Spang-Thomsen M et al (1997) Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann Oncol 8:1197–1206. https://doi.org/10.1023/a:1008209720526 Ostrom QT, Liao P, Stetson LC et al (2016) Epidemiology of glioblastoma and trends in glioblastoma survivorship. In: Brem S, Abdullah KG (eds) Glioblastoma, vol 2. Elsevier, Philadelphia, pp 11–19 Abdullah KG, Adamson C, Brem S (2016) The molecular pathogenesis of glioblastoma. In: Brem S, Abdullah KG (eds) Glioblastoma, vol 3. Elsevier, Philadelphia, pp 21–31 Chang C-Y, Kuan Y-H, Ou Y-C et al (2014) Autophagy contributes to gefitinib-induced glioma cell growth inhibition. Exp Cell Res 327:102–112. https://doi.org/10.1016/j.yexcr.2014.05.011 Chang C-Y, Shen C-C, Su H-L et al (2011) Gefitinib induces apoptosis in human glioma cells by targeting Bad phosphorylation. J Neuro-oncol 105:507–522. https://doi.org/10.1007/s11060-011-0632-3 Chang C-Y, Li J-R, Wu C-C et al (2015) Valproic acid sensitizes human glioma cells to gefitinib-induced autophagy. IUBMB Life 67:869–879. https://doi.org/10.1002/iub.1445 Bilir A, Erguven M, Oktem G et al (2008) Potentiation of cytotoxicity by combination of imatinib and chlorimipramine in glioma. Int J Oncol 32:829–839. https://doi.org/10.3892/ijo.32.4.829 Erguven M, Yazihan N, Aktas E et al (2010) Carvedilol in glioma treatment alone and with imatinib in vitro. Int J Oncol 36:857–866. https://doi.org/10.3892/ijo_00000563 Blommaart EF, Luiken JJ, Blommaart PJ et al (1995) Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rate hepatocytes. J Biol Chem 270:2320–2326. https://doi.org/10.1074/jbc.270.5.2320 MacKeigan JP, Krueger DA (2015) Differentiating the mTOR inhibitors everolimus and sirolimus in the treatment of tuberous sclerosis complex. Neuro Oncol 17:1550–1559. https://doi.org/10.1093/neuonc/nov152 Zhuang W-Z, Long L-M, Ji W-J et al (2011) Rapamycin induces differentiation of glioma stem/progenitor cells by activating autophagy. Chin J Cancer 30:712–720. https://doi.org/10.5732/cjc.011.10234 Zhuang W, Li B, Long L et al (2011) Induction of autophagy promotes differentiation of glioma-initiating cells and their radiosensitivity. Int J Cancer 129:2720–2731. https://doi.org/10.1002/ijc.25975 Wang M, Lu KV, Zhu S et al (2006) Mammalian target of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors in PTEN-deficient and PTEN-intact glioblastoma cells. Cancer Res 66:7864–7869. https://doi.org/10.1158/0008-5472.CAN-04-4392 Takeuchi H, Kondo Y, Fujiwara K et al (2005) Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res 65:3336–3346. https://doi.org/10.1158/0008-5472.CAN-04-3640 Yokoyama T, Iwado E, Kondo Y et al (2008) Autophagy-inducing agents augment the antitumor effect of telerase-selve oncolytic adenovirus OBP-405 on glioblastoma cells. Gene Ther 15:1233–1239. https://doi.org/10.1038/gt.2008.98 Chheda MG, Wen PY, Hochberg FH et al (2015) Vandetanib plus sirolimus in adults with recurrent glioblastoma: results of a phase I and dose expansion cohort study. J Neurooncol 121:627–634. https://doi.org/10.1007/s11060-014-1680-2 Mason WP, MacNeil M, Kavan P et al (2012) A phase I study of temozolomide and everolimus (RAD001) in patients with newly diagnosed and progressive glioblastoma either receiving or not receiving enzyme-inducing anticonvulsants: an NCIC CTG study. Investig N Drugs 30:2344–2351. https://doi.org/10.1007/s10637-011-9775-5 Alonso MM, Jiang H, Yokoyama T et al (2008) Delta-24-RGD in combination with RAD001 induces enhanced anti-glioma effect via autophagic cell death. Mol Ther 16:487–493. https://doi.org/10.1038/sj.mt.6300400 Goudar RK, Shi Q, Hjelmeland MD et al (2005) Combination therapy of inhibitors of epidermal growth factor receptor/vascular endothelial growth factor receptor 2 (AEE788) and the mammalian target of rapamycin (RAD001) offers improved glioblastoma tumor growth inhibition. Mol Cancer Ther 4:101–112 Maiti P, Scott J, Sengupta D et al (2019) Curcumin and solid lipid curcumin particles induce autophagy, but inhibit mitophagy and the PI3K-Akt/mTOR pathways in cultured glioblastoma cells. Int J Mol Sci 20:399. https://doi.org/10.3390/ijms20020399 Guo S, Long M, Li X et al (2016) Curcumin activates autophagy and attenuates oxidative damage in EA.hy926 cells via the Akt/mTOR pathway. Mol Med Rep 13:2187–1293. https://doi.org/10.3892/mmr.2016.4796 Zhao J, Zhu J, Lv X et al (2017) Curcumin potentiates the potent antitumor activity of ACNU against glioblastoma by suppressing the PI3K/AKT and NF-κB/COX-2 signaling pathways. Oncotargets Ther 10:5471–5482. https://doi.org/10.2147/OTT.S149708 Karmakar S, Banik NL, Patel SJ et al (2006) Curcumin activated both receptor-mediated and mitochondria-mediated proteolytic pathways for apoptosis in human glioblastoma T98G cells. Neurosci Lett 407:53–58. https://doi.org/10.1016/j.neulet.2006.08.013 Zhou Y-Y, Li Y, Jiang W-Q et al (2015) MAPK/JNK signalling: a potential autophagy regulation pathway. Biosci Rep 35:e00199. https://doi.org/10.1042/BSR20140141 Jarzabek MA, Amberger-Murphy V, Callanan JJ et al (2014) Interrogation of gossypol therapy in glioblastoma implementing cell line and patient-derived tumour models. Br J Cancer 111:2275–2286. https://doi.org/10.1038/bjc.2014.529 Fiveash J (January 2008–June 2012). Gossypol in treating patients with progressive or recurrent glioblastoma multiforme. Identifier NCT00540722. https://clinicaltrials.gov/ct2/show/NCT00540722 Voss V, Senft C, Lang V et al (2010) The pan-Bcl-2 inhibitor (−)-Gossypol triggers autophagic cell death in malignant glioma. Mol Cancer Res 8:1002–1016. https://doi.org/10.1158/1541-7786.MCR-09-0562 Yin D, Wakimoto N, Xing H et al (2008) Cucurbitacin B markedly inhibits growth and rapidly affects the cytoskeleton in glioblastoma multiforme. Int J Cancer 123:1364–1375. https://doi.org/10.1002/ijc.23648 Agarwal S, Maekawa T (2020) Nano delivery of natural substances as prospective autophagy modulators in glioblastoma. Nanomed Nanotechnol Biol Med 19:102270. https://doi.org/10.1016/j.nano.2020.102270 Lu L, Shen X, Tao B et al (2019) The nanoparticle-facilitated autophagy inhibition of cancer stem cells for improved chemotherapeutic effects on glioblastomas. J Mater Chem B 12:2054–2062. https://doi.org/10.1039/C8TB03165G Ulasov I, Fares J, Timashev P et al (2020) Editing cytoprotective autophagy in glioma: an unfulfilled potential for therapy. Trends Mol Biol 26:252–262. https://doi.org/10.1016/j.molmed.2019.11.001 Ishaq M, Ojha R, Sharma AP et al (2020) Autophagy in cancer: recent advances and future directions. Semin Cancer Biol 66:171–181. https://doi.org/10.1016/j.semcancer.2020.03.010 Ishimwe N, Zhang W, Qian J et al (2020) Autophagy regulation as a promising approach for improving cancer immunotherapy. Cancer Lett 475:34–42. https://doi.org/10.1016/j.canlet.2020.01.034 Kelly C, Majewska P, Ioannidis S et al (2017) Estimating progression-free survival in patients with glioblastoma using routinely collected data. J Neurooncol 135:621–627. https://doi.org/10.1007/s11060-017-2619-1 Seglen PO, Gordon PB (1982) 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA 79:1889–1892. https://doi.org/10.1073/pnas.79.6.1889 Vlahos CJ, Matter WF, Hui KY et al (1994) A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 269:5241–5248. https://doi.org/10.1016/S0021-9258(17)37680-9 Oppermann H, Faust H, Yamanishi U et al (2019) Carnosine inhibits glioblastoma growth independent from PI3K/Akt/mTOR signaling. PLoS ONE 14:e0218972. https://doi.org/10.1371/journal.pone.0218972 Yamamoto A, Tagawa Y, Yoshimori T et al (1998) Bafilomycin A1 prevents maturation of autophagy vacuoles by inhibiting fusion between autophagosomes and lysosomes in rat hepatoma cell line, H-4-II-E cells. Cell Struct Funct 23:33–42. https://doi.org/10.1247/csf.23.33 Hori YS, Hosoda R, Akiyama Y et al (2014) Chloroquine potentiates temozolomide cytotoxicity by inhibiting mitochondrial autophagy in glioma cells. J Neuro-oncol 122:11–20. https://doi.org/10.1007/s11060-014-1686-9 Bursch W (2006) Multiple cell death programs: Charon’s lifts to Hades. FEMS Yeast Res 5:101–110. https://doi.org/10.1016/j.femsyr.2004.07.006 Coyle T, Levante S, Shetler M et al (1994) In vitro and in vivo cytotoxicity of gossypol against central nervous system tumor cell lines. J Neurooncol 19:25–35. https://doi.org/10.1007/BF01051046 Hendricks BK, Cohen-Gadol AA, Miller JC (2015) Novel delivery methods bypassing the blood–brain and blood–tumor barriers. Neurosurg Focus 38:E10. https://doi.org/10.3171/2015.1.FOCUS14767 Bunevicius A, McDannold NJ, Golby AJ (2020) Focused ultrasound strategies for brain tumor therapy. Oper Neurosurg (Hagerstown) 19:9–18. https://doi.org/10.1093/ons/opz374 Han C, Gu H, Wang J et al (2013) Regulation of l-threonine dehydrogenase in somatic cell reprogramming. Stem Cells 31:953–965. https://doi.org/10.1002/stem.1335 Morsi RZ, Hage-Sleiman R, Koveissy H (2018) Noxa: role in cancer pathogenesis and treatment. Curr Cancer Drug Targets 18:914–928. https://doi.org/10.2174/1568009618666180308105048 Ciuffreda L, Di Sanza C, Incani UC et al (2012) The mitogen-activated protein kinase (MAPK) cascade controls phosphatase and tensin homolog (PTEN) expression through multiple mechanisms. J Mol Med 90:667–679. https://doi.org/10.1007/s00109-011-0844-1 Hammouda MB, Ford AE, Liu Y et al (2020) The JNK signaling pathway in inflammatory skin disorders and cancer. Cells 9:857. https://doi.org/10.3390/cells9040857 D’Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis, and autophagy. Cell Biol Int 43:582–592. https://doi.org/10.1002/cbin.11137 Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516. https://doi.org/10.1080/01926230701320337 Pawlowska E, Szczepanska J, Szatkowska M et al (2018) An interplay between senescence, apoptosis and autophagy in glioblastoma multiforme-role in pathogenesis and therapeutic perspective. Int J Mol Sci 18:889. https://doi.org/10.3390/ijms19030889 Capparelli C, Guido C, Whitaker-Menezes D et al (2012) Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production. Cell Cycle 11:2285–2302. https://doi.org/10.4161/cc.20718 Xiao M-C, Qian H, Huang C-K et al (2021) Imatinib inhibits the malignancy of hepatocellular carcinoma by suppressing autophagy. Eur J Pharmacol 906:174217. https://doi.org/10.1016/j.ejphar.2021.174217 Ray SK (2020) Modulation of autophagy for neuroprotection and functional recovery in traumatic spinal cord injury. Neural Regen Res 15:1601–1612. https://doi.org/10.4103/1673-5374.276322