Điều hòa quá trình lành vết thương bằng các yếu tố tăng trưởng và cytokine

Physiological Reviews - Tập 83 Số 3 - Trang 835-870 - 2003
Sabine Werner1,2, Richard Grose1,2
1Cancer Research UK, London Research Institute, London, United Kingdom
2Institute of Cell Biology, Department of Biology, ETH Zurich, Zurich, Switzerland; and Cancer Research UK, London Research Institute, London, United Kingdom

Tóm tắt

Werner, Sabine và Richard Grose. Điều hòa quá trình lành vết thương bằng các yếu tố tăng trưởng và cytokine. Physiol Rev 83: 835–870, 2003; doi:10.1152/physrev.00032.2002.—Quá trình lành vết thương trên da là một quá trình phức tạp bao gồm đông máu, viêm nhiễm, hình thành mô mới và cuối cùng là tái tạo mô. Quá trình này đã được mô tả rõ ràng ở cấp độ mô học, nhưng các gen điều tiết sự hồi phục của da chỉ được xác định một phần. Nhiều nghiên cứu thực nghiệm và lâm sàng đã chứng minh những tác động đa dạng, nhưng trong hầu hết các trường hợp là tích cực, của các yếu tố tăng trưởng ngoại sinh đối với quá trình lành vết thương. Tuy nhiên, vai trò của các yếu tố tăng trưởng nội sinh phần lớn vẫn chưa rõ. Các phương pháp ban đầu nhằm giải quyết câu hỏi này tập trung vào phân tích biểu hiện của các yếu tố tăng trưởng, cytokine và các thụ thể của chúng trong các mô hình vết thương khác nhau, với dữ liệu chức năng đầu tiên được thu thập thông qua việc áp dụng kháng thể trung hòa cho các vết thương. Trong những năm gần đây, sự xuất hiện của chuột được biến đổi gen đã cho phép làm sáng tỏ chức năng của các gen khác nhau trong quá trình lành vết thương, và các nghiên cứu này đã làm sáng tỏ vai trò của các yếu tố tăng trưởng, cytokine và các tác nhân hiệu ứng thứ cấp trong sự hồi phục vết thương. Bài tổng quan này tóm tắt các kết quả nghiên cứu biểu hiện đã được thực hiện trên chuột, lợn và người để xác định vị trí của các yếu tố tăng trưởng và các thụ thể của chúng trong các vết thương da. Quan trọng nhất, chúng tôi cũng báo cáo về các nghiên cứu di truyền nhằm giải thích chức năng của các yếu tố tăng trưởng nội sinh trong quá trình hồi phục vết thương.

Từ khóa

#Yếu tố tăng trưởng #cytokine #quá trình lành vết thương #di truyền học #chuột biến đổi gen #nghiên cứu biểu hiện #kháng thể trung hòa #viêm nhiễm #tái tạo mô #hồi phục da

Tài liệu tham khảo

AbrahamJAandKlagsbrunM. Modulation of wound repair by members of the fibroblast growth factor family. In:The Molecular and Cellular Biology of Wound Repair(2nd ed.), edited by Clark RAF. New York: Plenum, 1996, p. 195–248.

AmendtC, MannA, SchirmacherP,andBlessingM. Resistance of keratinocytes to TGFβ-mediated growth restriction and apoptosis induction accelerates re-epithelialization in skin wounds.J Cell Sci115: 2189–2198, 2002.

10.1038/sj.onc.1202161

AnandO, TerenghiG, WarnerG, KopelmanP, Williams-ChestnutRE,andSinicropiDV. The role of endogenous nerve growth factor in human diabetic neuropathy.Nat Med6: 703–707, 1996.

10.1172/JCI116636

10.1073/pnas.88.2.565

AntoniadesHN, GalanopoulosT, Neville-GoldenKiritsyCP,andLynchSE. Expression of growth factor and receptor mRNAs in skin epithelial cells following acute cutaneous injury.Am J Pathol142: 1099–1110, 1993.

10.1016/0006-8993(94)90252-6

10.1016/S0960-9822(01)00154-3

10.1046/j.1469-7580.1997.19030351.x

10.1016/S1359-6101(99)00036-2

10.1038/12971

AssoianRK, KomoriyaA, MeyersCA, MillerDM,andSpornMB. Transforming growth factor-beta in human platelets. Identification of a major storage site, purification, and characterization.J Biol Chem258: 7155–7160, 1983.

10.1128/MCB.19.4.2958

10.1073/pnas.95.11.6355

10.1046/j.1365-2796.2001.00867.x

10.1016/S0065-230X(08)60305-X

10.1053/jpsu.2001.27946

10.1016/S0083-6729(00)59008-6

10.1038/sj.onc.1201383

10.1111/1523-1747.ep12319188

BelperioJA, KeaneMP, ArenbergDA, AddisonCL, EhlertJE, BurdickMD,andStrieterRM. CXC chemokines in angiogenesis.J Leukoc Biol68: 1–8, 2000.

BernabeiR, LandiF, BoniniS, OnderG, LambiaseA, PolaR,andAloeL. Effect of topical application of nerve-growth factor on pressure ulcers.Lancet354: 307, 1999.

10.1172/JCI1744

BhowmickNA, ChytilA, CarlisleC, NeilsonEG, DavidsonJM,andMosesHL. The conditional knock-out of the transforming growth factor type II receptor in fibroblasts results in impaired wound healing (Abstract).Wound Repair Regen10: A4, 2002.

10.1067/msy.2000.105869

10.1006/jsre.1996.0090

10.1002/(SICI)1096-9896(200004)190:5<589::AID-PATH553>3.0.CO;2-T

10.1083/jcb.135.1.227

10.1096/fj.00-0490fje

10.1083/jcb.114.6.1285

BrauchleM, AngermeyerK, HubnerG,andWernerS. Large induction of keratinocyte growth factor expression by serum growth factors and pro-inflammatory cytokines in cultured fibroblasts.Oncogene9: 3199–3204, 1994.

10.1097/00000637-200105000-00016

BreuhahnK, MannA, MüllerG, WilhelmiA, SchirmacherP, EnkA,andBlessingM. Epidermal overexpression of granulocyte-macrophage colony-stimulating factor induces both keratinocyte proliferation and apoptosis.Cell Growth Differ11: 111–121, 2000.

10.1097/00006534-199709000-00018

BrigstockDR. The connective tissue growth factor/cysteine-rich 61/nephroblastoma overexpressed (CCN) family.Endocr Rev20: 189–206, 1999.

BroadleyKN, AquinoAM, WoodwardSC, Buckley-SturrockA, SatoY, RifkinDB,andDavidsonJM. Monospecific antibodies implicate basic fibroblast growth factor in normal wound repair.Lab Invest61: 571–575, 1989.

10.1002/1521-1878(200102)23:2<161::AID-BIES1023>3.0.CO;2-0

BrownDL, KaneCD, ChernausekSD,andGreenhalghDG. Differential expression and localization of insulin-like growth factors I and II in cutaneous wounds of diabetic and nondiabetic mice.Am J Pathol151: 715–724, 1997.

10.1084/jem.176.5.1375

10.1046/j.1524-475X.1995.30108.x

10.1016/S0002-9440(10)63033-7

10.1083/jcb.119.3.629

10.1038/337471a0

10.1038/87904

10.1038/sj.onc.1203357

10.1046/j.1524-475X.2002.11101.x

ChedidM, RubinJS, CsakyKG,andAaronsonSA. Regulation of keratinocyte growth factor gene expression by interleukin 1.J Biol Chem269: 10753–10757, 1994.

10.1074/jbc.M107666200

10.1111/1523-1747.ep12667378

10.1038/icb.1996.19

ChristianJLandNakayamaT. Can't get no SMADisfaction: Smad proteins as positive and negative regulators of TGF-beta family signals.Bioessays5: 382–390, 1999.

10.1634/stemcells.19-5-388

10.1016/S1359-6101(96)00053-6

10.1001/archsurg.134.2.200

10.1097/00000441-199307000-00011

ClarkRAF. Wound repair. Overview and general considerations. In:The Molecular and Cellular Biology of Wound Repair(2nd ed.), edited by Clark RAF. New York: Plenum, 1996, p. 3–50.

10.1128/MCB.8.8.3088

10.1006/scbi.2000.0366

10.1097/00001756-199411000-00019

10.1097/00000658-199406000-00012

CowinAJ, HolmesTM, BrosnanP,andFergusonMW. Expression of TGF-beta and its receptors in murine fetal and adult thermal wounds.Eur J Dermatol11: 424–431, 2001.

10.1007/s004410100443

10.1006/cbir.1995.1082

10.1097/00004630-200203000-00008

10.1046/j.1523-1747.2000.00010.x

10.1074/jbc.273.29.18185

10.1172/JCI117734

DanilenkoDM, RingBD, TarpleyJE, MorrisB, VanGY, MorawieckiA, CallahanW, GoldenbergM, HershensonS,andPierceGF. Growth factors in porcine full and partial thickness burn repair. Differing targets and effects of keratinocyte growth factor, platelet-derived growth factor-BB, epidermal growth factor, and neu differentiation factor.Am J Pathol147: 1261–1277, 1995.

10.1016/S0092-8674(00)81696-7

10.1083/jcb.122.1.103

10.1111/1523-1747.ep12312542

10.1046/j.1523-1747.2000.00034.x

10.1172/JCI1020

DiPietroLA, PolveriniPJ, RahbeSM,andKovacsEJ. Modulation of JE/MCP-1 expression in dermal wound repair.Am J Pathol146: 868–875, 1995.

10.1046/j.1524-475x.2001.00028.x

10.1074/jbc.M100780200

10.1074/jbc.271.40.24576

10.1002/1520-7560(200009/10)16:1+<::AID-DMRR142>3.0.CO;2-S

10.1517/14712598.2.2.211

10.1016/S0002-9440(10)65699-4

Eskild-JensenA, KoffJ, KjolsethD, AndersenLH, ChristensenTM, BaandrupU,andHjortdalVE. Endogenous TGF-beta1 and TGF-beta2 are not essential for epithelialization and neovascularization in the hairless mouse ear wound model.Ann Chir Gynaecol86: 248–254, 1997.

10.1016/1043-4666(90)90002-B

10.1046/j.1523-1747.2000.00085.x

10.4049/jimmunol.166.9.5749

10.1111/1523-1747.ep12313429

10.1083/jcb.200103062

10.1046/j.1524-475X.1997.50405.x

10.1016/S0002-9440(10)64926-7

10.1074/jbc.270.21.12607

10.1074/jbc.271.17.10188

10.1172/JCI9148

10.1111/1523-1747.ep12363389

10.1111/1523-1747.ep12393176

10.1101/gad.13.9.1055

10.1096/fj.00-0073com

10.1016/0022-4804(92)90121-F

10.1007/BF00929499

GhaharyA, ShenYJ, ScottPG, GongY,andTredgetEE. Enhanced expression of mRNA for transforming growth factor-beta, type I and type III procollagen in human post-burn hypertrophic scar tissues.J Lab Clin Med122: 465–473, 1993.

10.1006/jsre.1997.5017

10.1006/jsre.1994.1036

10.1046/j.1523-1747.1998.00418.x

GillitzerRandGoebelerM. Chemokines in cutaneous wound healing.J Leukoc Biol69: 513–521, 2001.

GoldLI, SungJJ, SiebertJW,andLongakerMT. Type I (RI) and type II (RII) receptors for transforming growth factor-beta isoforms are expressed subsequent to transforming growth factor-beta ligands during excisional wound repair.Am J Pathol150: 209–222, 1997.

10.2337/diab.35.4.491

10.1016/0305-4179(93)90061-C

10.1097/00005373-199607000-00029

GreenhalghDGandGamelliRL. Is impaired wound healing caused by infection or nutritional depletion?Surgery102: 306–312, 1987.

10.1016/S0379-0738(00)00218-8

10.1093/embo-reports/kvf119

10.1002/jcp.1041390323

GrovesRWandSchmidt-LuckeJA. Recombinant human GM-CSF in the treatment of poorly healing wounds.Adv Skin Wound Care13: 107–112, 2000.

10.1101/gad.10.2.165

10.1111/1523-1747.ep12396856

10.1136/bmj.324.7330.160

10.1111/j.1600-0625.1995.tb00058.x

10.1006/dbio.2001.0395

HasanW, ZhangR, LiuM, WarnJD,andSmithPG. Coordinate expression of NGF and α-smooth muscle actin mRNA and protein in cutaneous wound tissue of developing and adult rats.Cell Tissue Res300: 97–109, 2000.

10.1111/1523-1747.ep12476480

10.1006/abbi.2001.2707

10.1152/physrev.1999.79.4.1283

10.1093/emboj/18.5.1345

10.1038/sj.onc.1203035

10.1006/jsre.2001.6089

10.1096/fj.02-0103fje

10.1006/cyto.1996.0074

10.1006/dbio.1996.0042

10.1038/279793a0

10.1091/mbc.4.6.637

10.1074/jbc.273.21.13230

10.1093/nar/27.22.4324

10.1046/j.1524-475x.2000.00216.x

JackmanSH, YoakMB, KeerthyS,andBeaverBL. Differential expression of chemokines in a mouse model of wound healing.Ann Clin Lab Sci30: 201–207, 2000.

10.1126/science.1069639

10.1016/0014-4800(87)90074-8

10.1038/sj.gt.3300923

10.1038/sj.gt.3301732

JohnsonDEandWilliamsLT. Structural and functional diversity in the FGF receptor multigene family.Adv Cancer Res60: 1–41, 1993.

10.1046/j.1523-1747.1998.00407.x

10.1038/labinvest.3780244

10.1002/jcp.1041480119

KarkkainenMJ, MakinenT,andAlitaloK. Lymphatic endothelium: a new frontier of metastasis research.Nat Cell Biol4: E2–E5, 2002.

10.1016/0190-9622(91)70306-M

10.1007/s004030050246

10.1046/j.1365-2133.2000.03824.x

10.1046/j.1524-475x.2001.00386.x

10.1128/MCB.16.4.1326

10.1073/pnas.93.20.10933

10.1046/j.1524-475x.2000.00179.x

KothapalliD, FrazierKS, WelplyA, SegariniPR,andGrotendorstGR. Transforming growth factor β induces anchorage-independent growth of NRK fibroblasts via a connective tissue growth factor-dependent signaling pathway.Cell Growth Differ8: 61–68, 1997.

10.1073/pnas.90.2.770

10.1007/BF00375792

10.1046/j.1523-1747.2000.00036.x

LeeTY, ChinGS, KimWJ, ChauD, GittesGK,andLongakerMT. Expression of transforming growth factor beta 1, 2, and 3 proteins in keloids.Ann Plast Surg43: 179–184, 1999.

LeonardEJandDanilkovitchA. Macrophage stimulating protein.Adv Cancer Res77: 139–167, 2000.

10.1126/science.8009224

LevineJH, MosesHL, GoldLI,andNanneyLB. Spatial and temporal patterns of immunoreactive transforming growth factor β1, β2, and β3 during excisional wound repair.Am J Pathol143: 368–380, 1993.

10.1016/0166-2236(93)90092-Z

10.1073/pnas.77.7.4379

10.1006/cyto.1999.0598

10.1006/jsre.1998.5345

10.1053/jpsu.2000.6868

10.1016/S0002-9440(10)61717-8

10.1016/0092-8674(93)90228-I

10.1007/s004030050371

LusterAD, CardiffRD, MacLeanJA, CroweK,andGransteinRD. Delayed wound healing and disorganized neovascularization in transgenic mice expressing the IP-10 chemokine.Proc Assoc Am Physicians110: 183–196, 1988.

10.1172/JCI114210

MackoolRJ, GittesGK,andLongakerMT. Scarless healing. The fetal wound.Clin Plast Surg25: 357–365, 1998.

MandracchiaVJ, SandersSM,andFrerichsJA. The use of becaplermin (rhPDGF-BB) gel for chronic nonhealing ulcers. A retrospective analysis.Clin Pediatr Med Surg18: 189–209, 2001.

10.1046/j.0022-202x.2001.01600.x

10.1016/0092-8674(93)90227-H

10.1084/jem.182.5.1369

10.1073/pnas.90.9.3889

10.1111/1523-1747.ep12345413

10.1016/S0360-3016(00)00435-1

10.1126/science.276.5309.75

10.1002/dvg.1020140309

10.1146/annurev.cb.06.110190.003121

10.1146/annurev.biochem.67.1.753

10.1146/annurev.bi.62.070193.002503

10.1084/jem.187.3.297

10.1016/0014-4827(91)90462-4

10.1073/pnas.86.12.4416

10.1111/1523-1747.ep12327214

10.1006/excr.2000.5117

10.1073/pnas.101130898

10.1038/376337a0

10.1128/MCB.20.6.2260-2268.2000

10.1002/jcp.1080

10.1146/annurev.immunol.19.1.683

10.1096/fj.01-0776com

10.1093/emboj/18.19.5205

10.1002/j.1460-2075.1995.tb00206.x

NanneyLB, MuellerSG, BuenoR, PeiperSC,andRichmondA. Distributions of melanoma growth stimulatory activity of growth-regulated gene and the interleukin-8 receptor B in human wound repair.Am J Pathol147: 1248–1260, 1995.

10.1046/j.1523-1747.1998.00332.x

10.1159/000040833

10.1016/0022-3468(94)90582-7

10.1002/path.853

10.1016/S0039-6060(96)80148-6

NissenNN, PolveriniPJ, KochAE, VolinMV, GamelliRL,andDiPietroLA. Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing.Am J Pathol152: 1445–1452, 1998.

10.1016/S1357-2725(98)00048-X

10.1007/s004140050163

10.1016/S1357-2725(96)00120-3

10.1016/0923-1811(95)00454-Z

10.1002/(SICI)1521-1878(200002)22:2<108::AID-BIES2>3.0.CO;2-M

OrnitzDMandItohN. Fibroblast growth factors.Genome Biol2: 3005.1–3005.12, 2001.

10.1074/jbc.271.25.15292

10.1073/pnas.95.10.5672

10.1016/S0002-9440(10)65021-3

10.1016/S0002-9440(10)65474-0

10.1111/1523-1747.ep12480289

10.1002/hep.510290416

10.1073/pnas.90.19.8915

PetriJB, SchurkS, GebauerS,andHausteinUF. Cyclosporine A delays wounds healing and apoptosis and suppresses activin beta-A expression in rats.Eur J Dermatol2: 104–113, 1998.

PhillipsDJ. The activin/inhibin family. In:The Cytokine Handbook(4th ed.), edited by Thomson A and Lotze MT. Orlando, FL: Academic. In press.

10.1172/JCI118169

PincelliC. Nerve growth factor and keratinocytes: a role in psoriasis. Eur J Dermatol10: 85–90, 2000.

10.1172/JCI118828

10.1126/science.3041594

10.1007/s004030100224

10.1006/jsre.2000.5892

10.1007/s004030050181

10.1172/JCI116429

10.1016/S0165-3806(97)00105-3

10.1210/endo.141.1.7373

10.1016/0955-2235(90)90010-H

10.1159/000057358

RobertsABandSpornMB. Transforming growth factor-β. In:The Molecular and Cellular Biology of Wound Repair(2nd ed.), edited by Clark RAF. New York: Plenum, 1996, p. 275–308.

10.1073/pnas.83.12.4167

10.1152/ajpendo.1999.276.4.E663

10.1210/endo.137.7.8770897

10.1038/sj.gt.3301798

10.1073/pnas.71.4.1207

10.1146/annurev.immunol.18.1.217

10.1093/emboj/18.17.4657

10.1007/s004030050429

10.1006/bbrc.1999.1455

10.1002/path.1711710307

SchmidP, ItinP, CherryG, BiC,andCoxDA. Enhanced expression of transforming growth factor-beta type I and type II receptors in wound granulation tissue and hypertrophic scar.Am J Pathol152: 485–493, 1998.

10.1126/science.3492044

ScottPG, DoddCM, TredgetEE, GhaharyA,andRahemtullaF. Immunohistochemical localization of the proteoglycans decorin, biglycan and versican and transforming growth factor-beta in human post-burn hypertrophic and mature scars.Histopathology26: 423–431, 1995.

10.1046/j.1523-1747.1999.00558.x

10.1073/pnas.90.11.5237

ShahM, ForemanDM,andFergusonMWJ. Neutralising antibody to TGF-β1,2 reduces cutaneous scarring in adult rodents.J Cell Sci107: 1137–1157, 1994.

ShahM, ForemanDM,andFergusonMWJ. Neutralisation of TGF-β1 and TGF-β2 or exogenous addition of TGF-β3 to cutaneous rat wounds reduces scarring.J Cell Sci108: 985–1002, 1995.

10.1016/S0002-9440(10)65364-3

10.1046/j.1365-2443.1998.00174.x

10.1093/oxfordjournals.jbchem.a022414

ShirahaH, GladingA, GuptaK,andWellsA. IP-10 inhibits epidermal growth factor-induced motility by decreasing epidermal growth factor receptor-mediated calpain activity.J Cell Biol146: 243–254, 1999.

10.1006/bbrc.1998.8286

10.1038/359693a0

10.1126/science.7618085

10.1084/jem.173.5.1227

10.1002/(SICI)1520-6408(1998)22:4<321::AID-DVG3>3.0.CO;2-8

10.1096/fasebj.6.11.1644262

10.1016/S0002-9440(10)64555-5

10.1046/j.0022-202x.2001.01387.x

10.1007/s001250051645

SteedDL. Modifying the wound healing response with exogenous growth factors.Clin Plast Surg25: 397–405, 1998.

SteenfosHHandJanssonJO. Gene expression of insulin-like growth factor-I and IGF-I receptor during wound healing in rats.Eur J Surg158: 327–331, 1992.

10.1097/00006534-199801000-00003

10.1111/1523-1747.ep12668143

10.1074/jbc.M006935200

10.1016/0022-3468(95)90560-X

SwiftME, KleinmanHK,andDiPietroLA. Impaired wound repair and delayed angiogenesis in aged mice.Lab Invest79: 1479–1487, 1999.

10.1016/S0092-8674(00)00178-1

10.1016/S0378-1119(97)00187-X

10.1073/pnas.94.8.3801

10.1111/1523-1747.ep12276740

TheoretCL, BarberSM,andGordonJR. Temporal localization of immunoreactive transforming growth factor beta1 in normal equine skin and in full-thickness dermal wounds.Vet Surg31: 264–280, 2002.

10.1053/jvet.2001.23341

ToddR, DonoffBR, ChiangT, ChouMY, ElovicA, GallagherGT,andWongDT. The eosinophil as a cellular source of transforming growth factor alpha in healing cutaneous wounds.Am J Pathol138: 1307–1313, 1991.

10.1083/jcb.151.2.209

10.1016/S0014-5793(01)03126-X

10.1046/j.1524-475x.2000.00013.x

TsaharE, MoyerJD, WatermanH, BarbacciEG, BaoJ, LevkowitzG, ShellyM, StranoS, Pinkas-KramarskiR, PierceJH, AndrewsGC,andYardenY. Pathogenic poxviruses reveal viral strategies to exploit the ErbB signaling network.EMBO J15: 5948–5963, 1998.

10.1046/j.1524-475X.2002.10405.x

UenoH, EscobedoJA,andWilliamsLT. Dominant-negative mutations of platelet-derived growth factor (PDGF) receptors. Inhibition of receptor function by ligand-dependent formation of heterodimers between PDGF alpha- and beta-receptors.J Biol Chem268: 22814–22819, 1993.

UenoH, GunnM, DellK, TsengA Jr,andWilliamsLT. A truncated form of fibroblast growth factor receptor 1 inhibits signal transduction by multiple types of fibroblast growth factor receptor.J Biol Chem267: 1470–1476, 1992.

10.1073/pnas.96.15.8551

10.1097/00006534-199807000-00018

WakefieldLMandRobertsAB. TGF-beta signaling: positive and negative effects on tumorigenesis.Curr Opin Genet Dev1: 22–29, 2002.

10.1046/j.1524-475x.2000.00128.x

10.1073/pnas.96.15.8483

10.1677/joe.0.1710385

10.1093/emboj/20.19.5361

10.1073/pnas.95.16.9378

10.1172/JCI116130

WernerS. Keratinocyte growth factor: a unique player in epithelial repair processes.Cytokine Growth Factor Rev2: 153–165, 1998.

10.1111/1523-1747.ep12395564

10.1073/pnas.89.15.6896

10.1126/science.7973639

10.1046/j.1523-1747.2000.00029.x

10.1016/S0012-1606(05)80018-1

10.1016/S1471-4892(01)00111-4

10.1161/01.RES.81.4.567

WongDT, DonoffRB, YangJ, SongBZ, MatossianK, NaguraN, ElovicA, McBrideJ, GallagherG, ToddR, ChiangT, ChouLS-S, YungCM, GalliSJ,andWellerPF. Sequential expression of transforming growth factors alpha and beta 1 by eosinophils during cutaneous wound healing in the hamster.Am J Pathol143: 130–142, 1993.

10.1038/sj.onc.1202673

10.1016/S0002-9440(10)64058-8

10.1016/S0002-9440(10)63066-0

10.1016/S0002-9440(10)65256-X

10.1093/emboj/18.5.1280

10.1016/S0959-8049(01)00230-1

10.1002/lsm.1900150308

10.1083/jcb.129.3.853

10.1111/1523-1747.ep12606979

ZhangY, ProencaR, MaffeiM, BaroneM, LeopoldL,andFriedmanJM. Positional cloning of the mouse obese gene and its human homologue.Nature374: 425–432, 1994.