Regulation of Translation Initiation under Abiotic Stress Conditions in Plants: Is It a Conserved or Not so Conserved Process among Eukaryotes?

Comparative and Functional Genomics - Tập 2012 - Trang 1-8 - 2012
Alfonso Muñoz1, M. Mar Castellano2
1Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología-CSIC, 28049 Madrid, Spain
2Centro de Biotecnología y Genómica de Plantas, INIA-UPM, Campus de Montegancedo, 28223 Madrid, Spain

Tóm tắt

For years, the study of gene expression regulation of plants in response to stress conditions has been focused mainly on the analysis of transcriptional changes. However, the knowledge on translational regulation is very scarce in these organisms, despite in plants, as in the rest of the eukaryotes, translational regulation has been proven to play a pivotal role in the response to different stresses. Regulation of protein synthesis under abiotic stress was thought to be a conserved process, since, in general, both the translation factors and the translation process are basically similar in eukaryotes. However, this conservation is not so clear in plants as the knowledge of the mechanisms that control translation is very poor. Indeed, some of the basic regulators of translation initiation, well characterised in other systems, are still to be identified in plants. In this paper we will focus on both the regulation of different initiation factors and the mechanisms that cellular mRNAs use to bypass the translational repression established under abiotic stresses. For this purpose, we will review the knowledge from different eukaryotes but paying special attention to the information that has been recently published in plants.

Từ khóa


Tài liệu tham khảo

10.1038/nrm1618

10.1039/b708867a

10.1042/BJ20060166

10.1074/jbc.M110.172882

10.1091/mbc.E11-02-0153

10.1126/science.1144467

2004, Cancer Biology and Therapy, 3, 492, 10.4161/cbt.3.6.1010

10.1016/j.molcel.2007.10.019

10.3390/ijms10073168

10.1111/j.1365-313X.2008.03642.x

10.1046/j.1365-313X.2002.01257.x

10.1093/pcp/pcr001

10.1104/pp.106.079418

10.1271/bbb.100330

10.1038/nrm2838

2006, Biochemical Society Transactions, 34, 7, 10.1042/BST0340007

2001, Progress in Molecular and Subcellular Biology, 27, 57, 10.1007/978-3-662-09889-9_3

2001, Journal of Cellular and Molecular Medicine, 5, 221, 10.1111/j.1582-4934.2001.tb00157.x

10.1128/MCB.22.19.6681-6688.2002

10.1146/annurev.cellbio.18.011402.160624

1997, International Journal of Biochemistry and Cell Biology, 29, 945, 10.1016/S1357-2725(96)00169-0

10.1182/blood-2006-08-041830

10.1534/genetics.104.031443

10.1186/1471-2229-8-134

10.1093/jxb/ern169

1988, Science, 241, 451, 10.1126/science.3393910

10.1074/jbc.271.8.4539

1995, Plant Physiology, 108, 1259, 10.1104/pp.108.3.1259

1988, Journal of Biological Chemistry, 263, 13440, 10.1016/S0021-9258(18)37724-X

10.1074/jbc.272.2.1046

10.1093/emboj/16.5.1114

10.1128/MCB.20.13.4604-4613.2000

10.1016/j.gene.2008.04.008

10.1111/j.1365-313X.2005.02333.x

10.1016/j.virusres.2005.10.010

10.1038/sj.embor.7401043

10.1016/j.gene.2004.11.030

10.1023/A:1006494628892

10.1074/jbc.M201977200

10.1073/pnas.0406485102

10.1146/annurev.micro.59.031805.133833

2000, Molecular Cell, 6, 1099, 10.1016/S1097-2765(00)00108-8

1988, Nature, 334, 320, 10.1038/334320a0

1988, Molecular and Cellular Biology, 8, 1103, 10.1128/MCB.8.3.1103

1988, Journal of Virology, 62, 2636, 10.1128/JVI.62.8.2636-2643.1988

10.1042/BC20070098

10.4161/cc.10.2.14472

10.1016/j.febslet.2006.04.012

10.1007/s10059-010-0149-1

10.1074/jbc.R110.150532

10.1042/BST0351629

10.1074/jbc.M110.190553

10.1016/0014-5793(92)80301-V

10.1073/pnas.251542798

2002, Nucleic Acids Research, 30, 3401, 10.1093/nar/gkf457

1992, Nucleic Acids Research, 20, 4631, 10.1093/nar/20.17.4631

10.1093/nar/gki240

10.1074/jbc.M111.280099

10.1074/jbc.M103869200

10.1104/pp.109.138438

10.1007/s11103-010-9670-z

10.1017/S0960258511000043