Regulation of Membrane Protein Transport by Ubiquitin and Ubiquitin-Binding Proteins

Annual Review of Cell and Developmental Biology - Tập 19 Số 1 - Trang 141-172 - 2003
Linda Hicke1, Rebecca Dunn1
1Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois, 60208-3500

Tóm tắt

▪ Abstract  Ubiquitin regulates protein transport between membrane compartments by serving as a sorting signal on protein cargo and by controlling the activity of trafficking machinery. Monoubiquitin attached to integral plasma membrane proteins or to associated transport modifiers serves as a regulated signal for internalization into the endocytic pathway. Similarly, monoubiquitin attached to biosynthetic and endocytic membrane proteins is a signal for sorting of cargo into vesicles that bud into the late endosome lumen for delivery into the lysosome. Ubiquitination of trans-acting endocytic proteins is also required for transport, and key endocytic proteins are modified by monoubiquitin. Regulatory enzymes of the ubiquitination machinery, ubiquitin ligases, control the timing and specificity of plasma membrane protein downregulation in such diverse biological processes as cell fate specification and neurotransmission. Monoubiquitin signals appended by these ligases are recognized by endocytic proteins carrying ubiquitin-binding motifs, including UBA, UEV, UIM, and CUE domains. The UIM proteins epsins and Hrs are excellent candidates for adaptors that link ubiquitinated cargo to the clathrin-based sorting machinery at appropriate regions of the endosomal or plasma membranes. Other ubiquitin-binding proteins also play crucial roles in cargo transport, although in most cases the role of ubiquitin-binding is not defined. Ubiquitin-binding proteins such as epsins, Hrs, and Vps9 are monoubiquitinated, indicating the general nature of ubiquitin regulation in endocytosis and suggesting new models to explain how recognition of monoubiquitin signals may be regulated.

Từ khóa


Tài liệu tham khảo

10.1074/jbc.M211622200

10.1515/BC.2000.121

10.1091/mbc.11.10.3365

10.1128/MCB.14.12.7876

10.1074/jbc.M210843200

10.1083/jcb.146.6.1227

10.1083/jcb.140.5.1055

10.1038/ncb815

10.1083/jcb.200112080

10.1093/emboj/21.3.251

10.1074/jbc.M207604200

10.1016/S0896-6273(02)00749-3

10.1074/jbc.M102121200

10.1126/science.1323144

10.1126/science.2538923

10.1038/29555

10.1101/gad.961502

Cornell M, 1999, Genetics, 152, 567, 10.1093/genetics/152.2.567

10.1172/JCI12432

10.1083/jcb.200111010

10.1074/jbc.M301059200

10.1016/S1534-5807(01)00091-0

10.1093/emboj/20.24.7052

10.1016/S0014-5793(01)03306-3

10.1083/jcb.200107135

de Melker AA, 2001, J. Cell Sci., 114, 2167, 10.1242/jcs.114.11.2167

10.1038/nrm1124

10.1016/S0960-9822(03)00043-5

10.1091/mbc.12.2.421

10.1074/jbc.M104113200

10.1128/MCB.21.14.4482-4494.2001

10.1074/jbc.C100008200

10.1074/jbc.M102641200

10.1083/jcb.145.6.1199

10.1038/ncb758

Gajewska B, 2001, Genetics, 157, 91, 10.1093/genetics/157.1.91

10.1093/emboj/16.19.5847

10.1016/S0092-8674(01)00506-2

10.1073/pnas.161282998

10.1074/jbc.M211285200

10.1073/pnas.192462299

10.1038/ncb983

10.1074/jbc.274.21.15284

10.1038/sj.onc.1204475

10.1074/jbc.M102755200

10.1038/nrn961

10.1083/jcb.153.4.649

10.1146/annurev.biochem.67.1.425

10.1093/emboj/21.10.2418

10.1016/S0962-8924(98)01491-3

10.1016/S0092-8674(01)00485-8

10.1038/35056583

10.1038/nature00991

10.1016/0968-0004(96)30015-7

10.1016/S0968-0004(01)01835-7

10.1093/emboj/18.14.3897

10.1073/pnas.92.7.2563

10.1016/S1534-5807(02)00409-4

10.1074/jbc.M108552200

10.1016/S0092-8674(00)00077-5

10.1126/science.286.5438.309

Jongeward GD, 1995, Genetics, 139, 1553, 10.1093/genetics/139.4.1553

10.1016/S0092-8674(03)00362-3

10.1016/S0092-8674(01)00434-2

10.1038/nrm973

10.1016/S1097-2765(00)00134-9

10.1016/S0092-8674(02)00901-7

10.1074/jbc.M203004200

10.1093/emboj/16.9.2251

10.1016/S1534-5807(01)00092-2

10.1074/jbc.M110294200

10.1073/pnas.86.4.1168

10.1093/emboj/18.13.3616

10.1016/S1097-2765(00)80231-2

10.1101/gad.12.23.3663

10.1074/jbc.275.1.367

10.1016/S0014-5793(01)03079-4

10.1083/jcb.200106056

10.1091/mbc.12.4.1047

10.1016/S0167-5699(99)01484-X

10.1128/JVI.77.2.1427-1440.2003

10.1074/jbc.C100527200

10.1093/emboj/cdf579

10.1073/pnas.95.14.7927

10.1074/jbc.274.23.16619

10.1074/jbc.C300096200

10.1016/S0022-2836(02)00302-9

10.1016/S0896-6273(02)00795-X

10.1074/jbc.M907720199

10.1038/ni855

10.1093/emboj/18.9.2489

10.1093/emboj/21.1.93

10.1016/S0960-9822(02)00900-4

10.1084/jem.20020047

10.1016/S1534-5807(01)00093-4

10.1038/ng0298-143

10.1016/S1097-2765(01)00378-1

10.1038/416187a

10.1146/annurev.biochem.70.1.503

10.1038/416451a

10.1042/0264-6021:3510527

10.1093/emboj/21.10.2397

10.1016/S0962-8924(02)02402-9

10.1016/S0092-8674(03)00364-7

10.1074/jbc.M007300200

10.1038/ncb791

10.1093/emboj/20.17.5008

10.1093/emboj/20.18.5176

10.1038/ncb743

10.1091/mbc.12.5.1293

10.1074/jbc.275.11.8143

10.1007/s002320001079

10.1126/science.1062079

10.1083/jcb.151.6.1345

10.1074/jbc.R300018200

10.1074/jbc.M010642200

10.1016/S0006-291X(02)02006-5

10.1074/jbc.M209626200

10.1126/science.1063866

10.1038/ncb790

10.1093/emboj/cdg140

10.1093/emboj/19.2.187

10.1074/jbc.M105665200

10.1016/S1044-579X(02)00097-4

10.1074/jbc.M103248200

10.1074/jbc.C100623200

10.1074/jbc.M102945200

10.1038/416183a

10.1091/mbc.9.6.1253

10.1074/jbc.275.18.13940

10.1002/j.1460-2075.1996.tb00593.x

10.1093/emboj/16.21.6325

Strous GJ, 1999, J. Cell Sci., 112, 1417, 10.1242/jcs.112.10.1417

10.1016/S0092-8674(00)00203-8

10.1083/jcb.135.6.1789

10.1074/jbc.C200536200

10.1074/jbc.271.46.28727

10.1093/emboj/19.1.94

10.1074/jbc.M111384200

10.1034/j.1600-0854.2001.20905.x

10.1016/S0092-8674(01)00387-7

10.1074/jbc.275.3.1575

10.1074/jbc.M300459200

10.1074/jbc.M010738200

10.1073/pnas.202115499

10.1093/emboj/21.3.303

10.1074/jbc.274.32.22151

10.1038/35056563

10.1038/nrm970

10.1038/sj.onc.1205166

10.1093/emboj/cdf493

10.1074/jbc.M007991200