Regulation Mediated by N-Acyl Homoserine Lactone Quorum Sensing Signals in the Rhizobium-Legume Symbiosis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Gibson, 2008, Molecular determinants of a symbiotic chronic infection, Annu. Rev. Genet., 42, 413, 10.1146/annurev.genet.42.110807.091427
Oldroyd, 2008, Coordinating nodule morphogenesis with rhizobial infection in legumes, Annu. Rev. Plant Biol., 59, 519, 10.1146/annurev.arplant.59.032607.092839
Poole, 2018, Rhizobia: From saprophytes to endosymbionts, Nat. Rev. Microbiol., 16, 291, 10.1038/nrmicro.2017.171
Downie, 2010, The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots, FEMS Microbiol. Rev., 34, 150, 10.1111/j.1574-6976.2009.00205.x
Scharf, 2016, Chemotaxis signaling systems in model beneficial plant-bacteria associations, Plant Mol. Biol., 90, 549, 10.1007/s11103-016-0432-4
Gage, 2004, Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes, Microbiol. Mol. Biol. Rev., 68, 280, 10.1128/MMBR.68.2.280-300.2004
York, 1996, Rhizobium meliloti exopolysaccharides: Synthesis and symbiotic function, Gene, 179, 141, 10.1016/S0378-1119(96)00322-8
Cheng, 1998, Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti, J. Bacteriol., 180, 5183, 10.1128/JB.180.19.5183-5191.1998
Jones, 2008, Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant, Proc. Natl. Acad. Sci. USA, 105, 704, 10.1073/pnas.0709338105
Jayaraman, 2014, Staying in touch: Mechanical signals in plant-microbe interactions, Curr. Opin. Plant Biol., 20, 104, 10.1016/j.pbi.2014.05.003
Haag, 2013, Molecular insights into bacteroid development during Rhizobium-legume symbiosis, FEMS Microbiol. Rev., 37, 364, 10.1111/1574-6976.12003
Kondorosi, 2013, A paradigm for endosymbiotic life: Cell differentiation of Rhizobium bacteria provoked by host plant factors, Annu. Rev. Microbiol., 67, 611, 10.1146/annurev-micro-092412-155630
Udvardi, 2013, Transport and metabolism in legume-rhizobia symbioses, Annu. Rev. Plant Biol., 64, 781, 10.1146/annurev-arplant-050312-120235
Alunni, 2016, Terminal bacteroid differentiation in the legume-rhizobium symbiosis: Nodule-specific cysteine-rich peptides and beyond, New Phytol., 211, 411, 10.1111/nph.14025
Downie, 2002, Quorum-sensing in Rhizobium, Antonie Van Leeuwenhoek, 81, 397, 10.1023/A:1020501104051
Marketon, 2003, Quorum sensing in nitrogen-fixing rhizobia, Microbiol. Mol. Biol. Rev., 67, 574, 10.1128/MMBR.67.4.574-592.2003
Bauer, 2007, Quorum-sensing regulation in rhizobia and its role in symbiotic interactions with legumes, Philos. Trans. R. Soc. Lond B Biol. Sci., 362, 1149, 10.1098/rstb.2007.2041
Papenfort, 2016, Quorum sensing signal-response systems in Gram-negative bacteria, Nat. Rev. Microbiol., 14, 576, 10.1038/nrmicro.2016.89
Whiteley, 2017, Progress in and promise of bacterial quorum sensing research, Nature, 551, 313, 10.1038/nature24624
Loh, 2002, Bradyoxetin, a unique chemical signal involved in symbiotic gene regulation, Proc. Natl. Acad. Sci. USA, 99, 14446, 10.1073/pnas.222336799
Lindemann, 2011, Isovaleryl-homoserine lactone, an unusual branched-chain quorum-sensing signal from the soybean symbiont Bradyrhizobium japonicum, Proc. Natl. Acad. Sci. USA, 108, 16765, 10.1073/pnas.1114125108
Ahlgren, 2011, Aryl-homoserine lactone quorum sensing in stem-nodulating photosynthetic bradyrhizobia, Proc. Natl. Acad. Sci. USA, 108, 7183, 10.1073/pnas.1103821108
Pereira, 2008, Sinorhizobium meliloti, a bacterium lacking the autoinducer-2 (AI-2) synthase, responds to AI-2 supplied by other bacteria, Mol. Microbiol., 70, 1223, 10.1111/j.1365-2958.2008.06477.x
Marketon, 2002, Characterization of the Sinorhizobium meliloti sinR/sinI locus and the production of novel N-acyl homoserine lactones, J. Bacteriol., 184, 5686, 10.1128/JB.184.20.5686-5695.2002
Teplitski, 2003, Chemical identification of N-acyl homoserine lactone quorum-sensing signals produced by Sinorhizobium meliloti strains in defined medium, Arch. Microbiol., 180, 494, 10.1007/s00203-003-0612-x
Gao, 2005, sinI- and expR-dependent quorum sensing in Sinorhizobium meliloti, J. Bacteriol., 187, 7931, 10.1128/JB.187.23.7931-7944.2005
Marketon, 2002, Identification of two quorum-sensing systems in Sinorhizobium meliloti, J. Bacteriol., 184, 3466, 10.1128/JB.184.13.3466-3475.2002
Charoenpanich, 2013, Temporal expression program of quorum sensing-based transcription regulation in Sinorhizobium meliloti, J. Bacteriol., 195, 3224, 10.1128/JB.00234-13
Hoang, 2004, The LuxR homolog ExpR, in combination with the Sin quorum sensing system, plays a central role in Sinorhizobium meliloti gene expression, J. Bacteriol., 186, 5460, 10.1128/JB.186.16.5460-5472.2004
Gurich, 2009, Role of quorum sensing in Sinorhizobium meliloti-alfalfa symbiosis, J. Bacteriol., 191, 4372, 10.1128/JB.00376-09
Patankar, 2009, Orphan LuxR regulators of quorum sensing, FEMS Microbiol. Rev., 33, 739, 10.1111/j.1574-6976.2009.00163.x
Brameyer, 2014, LuxR solos in Photorhabdus species, Front. Cell. Infect. Microbiol., 4, 166, 10.3389/fcimb.2014.00166
Goryachev, 2009, Design principles of the bacterial quorum sensing gene networks, Wiley Interdiscip. Rev. Syst. Biol. Med., 1, 45, 10.1002/wsbm.27
McIntosh, 2009, Novel Sinorhizobium meliloti quorum sensing positive and negative regulatory feedback mechanisms respond to phosphate availability, Mol. Microbiol., 74, 1238, 10.1111/j.1365-2958.2009.06930.x
Zatakia, 2014, ExpR coordinates the expression of symbiotically important, bundle-forming Flp pili with quorum sensing in Sinorhizobium meliloti, Appl. Environ. Microbiol., 80, 2429, 10.1128/AEM.04088-13
Pellock, 2002, A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti, J. Bacteriol., 184, 5067, 10.1128/JB.184.18.5067-5076.2002
Marketon, 2003, Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti, J. Bacteriol., 185, 325, 10.1128/JB.185.1.325-331.2003
Glenn, 2007, The ExpR/Sin quorum-sensing system controls succinoglycan production in Sinorhizobium meliloti, J. Bacteriol., 189, 7077, 10.1128/JB.00906-07
McIntosh, 2008, Competitive and cooperative effects in quorum-sensing-regulated galactoglucan biosynthesis in Sinorhizobium meliloti, J. Bacteriol., 190, 5308, 10.1128/JB.00063-08
Charoenpanich, 2015, Quorum sensing restrains growth and is rapidly inactivated during domestication of Sinorhizobium meliloti, Environ. Microbiol. Rep., 7, 373, 10.1111/1758-2229.12262
Patel, 2013, Bacterial LuxR solos have evolved to respond to different molecules including signals from plants, Front. Plant Sci., 4, 447, 10.3389/fpls.2013.00447
Sourjik, 2000, VisN and VisR are global regulators of chemotaxis, flagellar, and motility genes in Sinorhizobium (Rhizobium) meliloti, J. Bacteriol., 182, 782, 10.1128/JB.182.3.782-788.2000
Bahlawane, 2008, Sinorhizobium meliloti regulator MucR couples exopolysaccharide synthesis and motility, Mol. Plant Microbe Interact., 21, 1498, 10.1094/MPMI-21-11-1498
Zheng, 2003, A luxR homolog, aviR, in Agrobacterium vitis is associated with induction of necrosis on grape and a hypersensitive response on tobacco, Mol. Plant Microbe Interact., 16, 650, 10.1094/MPMI.2003.16.7.650
Patankar, 2009, An orphan LuxR homolog of Sinorhizobium meliloti affects stress adaptation and competition for nodulation, Appl. Environ. Microbiol., 75, 946, 10.1128/AEM.01692-08
Gonzalez, 2013, A novel widespread interkingdom signaling circuit, Trends Plant Sci., 18, 167, 10.1016/j.tplants.2012.09.007
Ferluga, 2007, A LuxR homologue of Xanthomonas oryzae pv. oryzae is required for optimal rice virulence, Mol. Plant Pathol., 8, 529, 10.1111/j.1364-3703.2007.00415.x
Zhang, 2007, A proline iminopeptidase gene upregulated in planta by a LuxR homologue is essential for pathogenicity of Xanthomonas campestris pv. campestris, Mol. Microbiol., 65, 121, 10.1111/j.1365-2958.2007.05775.x
Toyofuku, 2017, Membrane vesicle-mediated bacterial communication, ISME J., 11, 1504, 10.1038/ismej.2017.13
Krol, 2014, Rhizobial homologs of the fatty acid transporter FadL facilitate perception of long-chain acyl-homoserine lactone signals, Proc. Natl. Acad. Sci. USA, 111, 10702, 10.1073/pnas.1404929111
Bartels, 2007, Effector-stimulated single molecule protein-DNA interactions of a quorum-sensing system in Sinorhizobium meliloti, Biophys. J., 92, 4391, 10.1529/biophysj.106.082016
Krol, 2004, Global transcriptional analysis of the phosphate starvation response in Sinorhizobium meliloti strains 1021 and 2011, Mol. Genet. Genom., 272, 1, 10.1007/s00438-004-1030-8
Krol, 2011, ppGpp in Sinorhizobium meliloti: Biosynthesis in response to sudden nutritional downshifts and modulation of the transcriptome, Mol. Microbiol., 81, 1233, 10.1111/j.1365-2958.2011.07752.x
Moris, 2005, Effective symbiosis between Rhizobium etli and Phaseolus vulgaris requires the alarmone ppGpp, J. Bacteriol., 187, 5460, 10.1128/JB.187.15.5460-5469.2005
Srivastava, 2012, A tangled web: Regulatory connections between quorum sensing and cyclic Di-GMP, J. Bacteriol., 194, 4485, 10.1128/JB.00379-12
Krol, 2016, Cyclic Di-GMP regulates multiple cellular functions in the symbiotic alphaproteobacterium Sinorhizobium meliloti, J. Bacteriol., 198, 521, 10.1128/JB.00795-15
Lenz, 2004, The small RNA chaperone Hfq and multiple small RNAs control quorum sensing in Vibrio harveyi and Vibrio cholerae, Cell, 118, 69, 10.1016/j.cell.2004.06.009
Xavier, 2007, The role of small RNAs in quorum sensing, Curr. Opin. Microbiol., 10, 189, 10.1016/j.mib.2007.03.009
Mackie, 2013, RNase E: At the interface of bacterial RNA processing and decay, Nat. Rev. Microbiol., 11, 45, 10.1038/nrmicro2930
Baumgardt, 2014, RNase E affects the expression of the acyl-homoserine lactone synthase gene sinI in Sinorhizobium meliloti, J. Bacteriol., 196, 1435, 10.1128/JB.01471-13
Gao, 2015, Modulation of Sinorhizobium meliloti quorum sensing by Hfq-mediated post-transcriptional regulation of ExpR, Environ. Microbiol. Rep., 7, 148, 10.1111/1758-2229.12235
Schlüter, J.P., Reinkensmeier, J., Daschkey, S., Evguenieva-Hackenberg, E., Janssen, S., Janicke, S., Becker, J.D., Giegerich, R., and Becker, A. (2010). A genome-wide survey of sRNAs in the symbiotic nitrogen-fixing alpha-proteobacterium Sinorhizobium meliloti. BMC Genomics, 11.
Baumgardt, 2016, The stress-related, rhizobial small RNA RcsR1 destabilizes the autoinducer synthase encoding mRNA sinI in Sinorhizobium meliloti, RNA Biol., 13, 486, 10.1080/15476286.2015.1110673
Jitacksorn, 2008, Nodulation gene regulation and quorum sensing control density-dependent suppression and restriction of nodulation in the Bradyrhizobium japonicum-soybean symbiosis, Appl. Environ. Microbiol., 74, 3749, 10.1128/AEM.02939-07
Pongsilp, 2005, Detection of homoserine lactone-like quorum sensing molecules in Bradyrhizobium strains, Curr. Microbiol., 51, 250, 10.1007/s00284-005-4550-5
Nievas, 2012, Detection, characterization, and biological effect of quorum-sensing signaling molecules in peanut-nodulating bradyrhizobia, Sensors (Basel), 12, 2851, 10.3390/s120302851
Ali, A., Hameed, S., Imran, A., Iqbal, M., Iqbal, J., and Oresnik, I.J. (2016). Functional characterization of a soybean growth stimulator Bradyrhizobium sp. strain SR-6 showing acylhomoserine lactone production. FEMS Microbiol. Ecol., 92.
Yang, 2009, Functional analysis of three AHL autoinducer synthase genes in Mesorhizobium loti reveals the important role of quorum sensing in symbiotic nodulation, Can. J. Microbiol., 55, 210, 10.1139/W08-128
Ramsay, 2009, A LuxRI-family regulatory system controls excision and transfer of the Mesorhizobium loti strain R7A symbiosis island by activating expression of two conserved hypothetical genes, Mol. Microbiol., 73, 1141, 10.1111/j.1365-2958.2009.06843.x
Zheng, 2006, A LuxR/LuxI-type quorum-sensing system in a plant bacterium, Mesorhizobium tianshanense, controls symbiotic nodulation, J. Bacteriol., 188, 1943, 10.1128/JB.188.5.1943-1949.2006
Cao, 2009, Complex quorum-sensing regulatory systems regulate bacterial growth and symbiotic nodulation in Mesorhizobium tianshanense, Arch. Microbiol., 191, 283, 10.1007/s00203-008-0454-7
Gao, 2006, The quorum-sensing system in a plant bacterium Mesorhizobium huakuii affects growth rate and symbiotic nodulation, Plant and Soil, 286, 53, 10.1007/s11104-006-9025-3
Daniels, 2002, The cin quorum sensing locus of Rhizobium etli CNPAF512 affects growth and symbiotic nitrogen fixation, J. Biol. Chem., 277, 462, 10.1074/jbc.M106655200
Daniels, 2006, Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli, Proc. Natl. Acad. Sci. USA, 103, 14965, 10.1073/pnas.0511037103
Rosemeyer, 1998, luxI- and luxR-homologous genes of Rhizobium etli CNPAF512 contribute to synthesis of autoinducer molecules and nodulation of Phaseolus vulgaris, J. Bacteriol., 180, 815, 10.1128/JB.180.4.815-821.1998
Zheng, 2015, The quorum sensing regulator CinR hierarchically regulates two other quorum sensing pathways in ligand-dependent and -independent fashions in Rhizobium etli, J. Bacteriol., 197, 1573, 10.1128/JB.00003-15
Bustos, 2003, Conjugative transfer of p42a from Rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing, J. Bacteriol., 185, 1681, 10.1128/JB.185.5.1681-1692.2003
Dixit, 2017, Roles of quorum sensing molecules from Rhizobium etli RT1 in bacterial motility and biofilm formation, Braz. J. Microbiol., 48, 815, 10.1016/j.bjm.2016.08.005
Lithgow, 2000, The regulatory locus cinRI in Rhizobium leguminosarum controls a network of quorum-sensing loci, Mol. Microbiol., 37, 81, 10.1046/j.1365-2958.2000.01960.x
Edwards, 2009, The cin and rai quorum-sensing regulatory systems in Rhizobium leguminosarum are coordinated by ExpR and CinS, a small regulatory protein coexpressed with CinI, J. Bacteriol., 191, 3059, 10.1128/JB.01650-08
Frederix, 2011, Co-ordination of quorum-sensing regulation in Rhizobium leguminosarum by induction of an anti-repressor, Mol. Microbiol., 81, 994, 10.1111/j.1365-2958.2011.07738.x
Rodelas, 1999, Analysis of quorum-sensing-dependent control of rhizosphere-expressed (rhi) genes in Rhizobium leguminosarum bv. viciae, J. Bacteriol., 181, 3816, 10.1128/JB.181.12.3816-3823.1999
Danino, 2003, Recipient-induced transfer of the symbiotic plasmid pRL1JI in Rhizobium leguminosarum bv. viciae is regulated by a quorum-sensing relay, Mol. Microbiol., 50, 511, 10.1046/j.1365-2958.2003.03699.x
Jones, 2002, raiIR Genes are part of a quorum-sensing network controlled by cinI and cinR in Rhizobium leguminosarum, J. Bacteriol., 184, 1597, 10.1128/JB.184.6.1597-1606.2002
Cubo, 2011, Nodulation-gene-inducing flavonoids increase overall production of autoinducers and expression of N-acyl homoserine lactone synthesis genes in rhizobia, Res. Microbiol., 162, 715, 10.1016/j.resmic.2011.05.002
Pérez-Montaño, F., Jiménez-Guerrero, I., Del Cerro, P., Baena-Ropero, I., López-Baena, F.J., Ollero, F.J., Bellogín, R., Lloret, J., and Espuny, R. (2014). The symbiotic biofilm of Sinorhizobium fredii SMH12, necessary for successful colonization and symbiosis of Glycine max cv Osumi, is regulated by Quorum Sensing systems and inducing flavonoids via NodD1. PLoS ONE, 9.
He, 2003, Quorum sensing in Rhizobium sp. strain NGR234 regulates conjugal transfer (tra) gene expression and influences growth rate, J. Bacteriol., 185, 809, 10.1128/JB.185.3.809-822.2003
Krysciak, 2014, RNA sequencing analysis of the broad-host-range strain Sinorhizobium fredii NGR234 identifies a large set of genes linked to quorum sensing-dependent regulation in the background of a traI and ngrI deletion mutant, Appl. Environ. Microbiol., 80, 5655, 10.1128/AEM.01835-14
Grote, 2016, The absence of the N-acyl-homoserine-lactone autoinducer synthase genes traI and ngrI increases the copy number of the symbiotic plasmid in Sinorhizobium fredii NGR234, Front. Microbiol., 7, 1858, 10.3389/fmicb.2016.01858
Hoang, 2008, Regulation of motility by the ExpR/Sin quorum-sensing system in Sinorhizobium meliloti, J. Bacteriol., 190, 861, 10.1128/JB.01310-07
Lloret, 2015, Novel mixed-linkage beta-glucan activated by c-di-GMP in Sinorhizobium meliloti, Proc. Natl. Acad. Sci. USA, 112, E757
Ramsay, 2013, A widely conserved molecular switch controls quorum sensing and symbiosis island transfer in Mesorhizobium loti through expression of a novel antiactivator, Mol. Microbiol., 87, 1, 10.1111/mmi.12079
Ramsay, 2015, Ribosomal frameshifting and dual-target antiactivation restrict quorum-sensing-activated transfer of a mobile genetic element, Proc. Natl. Acad. Sci. USA, 112, 4104, 10.1073/pnas.1501574112
Haskett, T.L., Terpolilli, J.J., Ramachandran, V.K., Verdonk, C.J., Poole, P.S., O’Hara, G.W., and Ramsay, J.P. (2018). Sequential induction of three recombination directionality factors directs assembly of tripartite integrative and conjugative elements. PLoS Genet., 14.
Rinaudi, 2009, The low-molecular-weight fraction of exopolysaccharide II from Sinorhizobium meliloti is a crucial determinant of biofilm formation, J. Bacteriol., 191, 7216, 10.1128/JB.01063-09
Nogales, 2012, ExpR is not required for swarming but promotes sliding in Sinorhizobium meliloti, J. Bacteriol., 194, 2027, 10.1128/JB.06524-11
Gao, M., Coggin, A., Yagnik, K., and Teplitski, M. (2012). Role of specific quorum-sensing signals in the regulation of exopolysaccharide II production within Sinorhizobium meliloti spreading colonies. PLoS ONE, 7.
Dilanji, 2014, Entropy-driven motility of Sinorhizobium meliloti on a semi-solid surface, Proc. Biol. Sci., 281, 20132575
Kearns, 2010, A field guide to bacterial swarming motility, Nat. Rev. Microbiol., 8, 634, 10.1038/nrmicro2405
Soto, 2015, Characterization of surface motility in Sinorhizobium meliloti: Regulation and role in symbiosis, Symbiosis, 67, 79, 10.1007/s13199-015-0340-4
Karunakaran, 2009, Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca, J. Bacteriol., 191, 4002, 10.1128/JB.00165-09
Rinaudi, 2010, An integrated view of biofilm formation in rhizobia, FEMS Microbiol. Lett., 304, 1, 10.1111/j.1574-6968.2009.01840.x
Amaya-Gómez, C.V., Hirsch, A.M., and Soto, M.J. (2015). Biofilm formation assessment in Sinorhizobium meliloti reveals interlinked control with surface motility. BMC Microbiol., 15.
Schikora, 2016, Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group, Plant Mol. Biol., 90, 605, 10.1007/s11103-016-0457-8
Palmer, 2016, Interkingdom responses to bacterial quorum sensing signals regulate frequency and rate of nodulation in legume-rhizobia symbiosis, Chembiochem, 17, 2199, 10.1002/cbic.201600373
Mathesius, 2003, Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals, Proc. Natl. Acad. Sci. USA, 100, 1444, 10.1073/pnas.262672599
Schenk, 2012, Arabidopsis growth and defense are modulated by bacterial quorum sensing molecules, Plant Signal. Behav., 7, 178, 10.4161/psb.18789
Zarkani, 2013, Homoserine lactones influence the reaction of plants to rhizobia, Int. J. Mol. Sci., 14, 17122, 10.3390/ijms140817122
Schenk, 2014, N-acyl-homoserine lactones-producing bacteria protect plants against plant and human pathogens, Microb. Biotechnol., 7, 580, 10.1111/1751-7915.12177
Schikora, 2011, N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6, Plant Physiol., 157, 1407, 10.1104/pp.111.180604
Schenk, 2014, N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway, Plant Cell, 26, 2708, 10.1105/tpc.114.126763
Schenk, 2014, AHL-priming functions via oxylipin and salicylic acid, Front. Plant Sci., 5, 784
Yuan, 2014, A Sinorhizobium meliloti-specific N-acyl homoserine lactone quorum-sensing signal increases nodule numbers in Medicago truncatula independent of autoregulation, Front. Plant Sci., 5, 551
Palmer, 2014, Plant responses to bacterial N-acyl L-homoserine lactones are dependent on enzymatic degradation to L-homoserine, ACS Chem. Biol., 9, 1834, 10.1021/cb500191a
Gao, 2003, Production of substances by Medicago truncatula that affect bacterial quorum sensing, Mol. Plant Microbe Interact., 16, 827, 10.1094/MPMI.2003.16.9.827
Degrassi, 2007, Oryza sativa rice plants contain molecules that activate different quorum-sensing N-acyl homoserine lactone biosensors and are sensitive to the specific AiiA lactonase, FEMS Microbiol. Lett., 269, 213, 10.1111/j.1574-6968.2006.00624.x
Venturi, 2016, Signaling in the rhizosphere, Trends Plant Sci., 21, 187, 10.1016/j.tplants.2016.01.005
Keshavan, 2005, L-Canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti, J. Bacteriol., 187, 8427, 10.1128/JB.187.24.8427-8436.2005
Ollero, 2013, Rice and bean AHL-mimic quorum-sensing signals specifically interfere with the capacity to form biofilms by plant-associated bacteria, Res. Microbiol., 164, 749, 10.1016/j.resmic.2013.04.001
Daddaoua, 2016, Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator, Sci. Signal., 9, ra1
Nievas, 2017, Arachis hypogaea L. produces mimic and inhibitory quorum sensing like molecules, Antonie Van Leeuwenhoek, 110, 891, 10.1007/s10482-017-0862-2
Draganov, 2005, Human paraoxonases (PON1, PON2, and PON3) are lactonases with overlapping and distinct substrate specificities, J. Lipid Res., 46, 1239, 10.1194/jlr.M400511-JLR200