Các tính chất quy định trong chương trình phân loại C*-đại số có thể tách rời và có thể chấp nhận

Bulletin of the American Mathematical Society - Tập 45 Số 2 - Trang 229-245
George A. Elliott1, Andrew S. Toms2
1Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 2E4
2Department of Mathematics and Statistics, York University, 4700 Keele Street, Toronto, Ontario, Canada M3J 1P3

Tóm tắt

Chúng tôi báo cáo về tiến trình gần đây trong chương trình phân loại các đại số C^* có thể tách rời và có thể chấp nhận. Chúng tôi nhấn mạnh vai trò mới nổi lên của các tính chất quy định như hạng phân rã hữu hạn, so sánh nghiêm ngặt của các phần tử dương, và Z\mathcal {Z}-ổn định, cũng như tầm quan trọng của bán nhóm Cuntz. Chúng tôi bao gồm một lịch sử ngắn gọn về những thành công của chương trình kể từ năm 1989, một cái nhìn chi tiết hơn về các đại số loại Villadsen, những yếu tố đã thay đổi đáng kể cảnh quan, và một tập hợp các thông báo về cấu trúc và các tính chất của bán nhóm Cuntz.

Từ khóa


Tài liệu tham khảo

Blackadar, Bruce, 1991, The real rank of inductive limit 𝐶*-algebras, Math. Scand., 69, 211, 10.7146/math.scand.a-12379

Blackadar, Bruce, 1982, Dimension functions and traces on 𝐶*-algebras, J. Functional Analysis, 45, 297, 10.1016/0022-1236(82)90009-X

Bratteli, Ola, 1972, Inductive limits of finite dimensional 𝐶*-algebras, Trans. Amer. Math. Soc., 171, 195, 10.2307/1996380

Brown, Nathanial P., 2006, Invariant means and finite representation theory of 𝐶*-algebras, Mem. Amer. Math. Soc., 184, viii+105, 10.1090/memo/0865

BPT Brown, N. P., Perera, F., and Toms, A. S.: The Cuntz semigroup, the Elliott conjecture, and dimension functions on 𝐶*-algebras, to appear in J. Reine Angew. Math.

bt Brown, N. P., and Toms, A. S.: Three applications of the Cuntz semigroup, to appear in Int. Math. Res. Not.

cie Ciuperca, A., and Elliott, G. A.: A remark on invariants for 𝐶*-algebras of stable rank one, preprint.

Choi, Man Duen, 1978, Nuclear 𝐶*-algebras and the approximation property, Amer. J. Math., 100, 61, 10.2307/2373876

Choi, Man Duen, 1977, Nuclear 𝐶*-algebras and injectivity: the general case, Indiana Univ. Math. J., 26, 443, 10.1512/iumj.1977.26.26034

Connes, A., 1978, On the cohomology of operator algebras, J. Functional Analysis, 28, 248, 10.1016/0022-1236(78)90088-5

Connes, A., 1976, Classification of injective factors. Cases 𝐼𝐼₁, 𝐼𝐼_{∞}, 𝐼𝐼𝐼_{𝜆}, 𝜆̸=1, Ann. of Math. (2), 104, 73, 10.2307/1971057

cei Coward, K. T., Elliott, G. A., and Ivanescu, C.: The Cuntz semigroup as an invariant for 𝐶*-algebras, electronic preprint, arXiv:0705.0341 (2007).

Cuntz, Joachim, 1978, Dimension functions on simple 𝐶*-algebras, Math. Ann., 233, 145, 10.1007/BF01421922

Dădărlat, Marius, 1995, Reduction to dimension three of local spectra of real rank zero 𝐶*-algebras, J. Reine Angew. Math., 460, 189, 10.1515/crll.1995.460.189

Dadarlat, Marius, 2000, Nonnuclear subalgebras of AF algebras, Amer. J. Math., 122, 581, 10.1353/ajm.2000.0018

Elliott, George A., 1976, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Algebra, 38, 29, 10.1016/0021-8693(76)90242-8

Elliott, George A., 1995, The classification problem for amenable 𝐶*-algebras, 922

Elliott, George A., 1993, On the classification of 𝐶*-algebras of real rank zero, J. Reine Angew. Math., 443, 179, 10.1515/crll.1993.443.179

El4 Elliott, G. A.: Towards a theory of classification, to appear in Advances in Math.

Elliott, George A., 1993, The structure of the irrational rotation 𝐶*-algebra, Ann. of Math. (2), 138, 477, 10.2307/2946553

Elliott, George A., 1996, On the classification of 𝐶*-algebras of real rank zero. II, Ann. of Math. (2), 144, 497, 10.2307/2118565

Elliott, George A., 1998, Approximate divisibility of simple inductive limit 𝐶*-algebras, 87, 10.1090/conm/228/03283

Elliott, George A., 2007, On the classification of simple inductive limit 𝐶*-algebras. II. The isomorphism theorem, Invent. Math., 168, 249, 10.1007/s00222-006-0033-y

ei Elliott. G. A., and Ivanescu, C.: The classification of separable simple 𝐶*-algebras which are inductive limits of continuous-trace 𝐶*-algebras with spectrum homeomorphic to the closed interval [0,1], J. Funct. Anal. (2008).

Glimm, James G., 1960, On a certain class of operator algebras, Trans. Amer. Math. Soc., 95, 318, 10.2307/1993294

Gong, Guihua, 2002, On the classification of simple inductive limit 𝐶*-algebras. I. The reduction theorem, Doc. Math., 7, 255, 10.4171/dm/127

Gong, Guihua, 1997, On inductive limits of matrix algebras over higher-dimensional spaces. I, II, Math. Scand., 80, 41, 10.7146/math.scand.a-12611

Gong, Guihua, 2000, Obstructions to 𝒵-stability for unital simple 𝒞*-algebras, Canad. Math. Bull., 43, 418, 10.4153/CMB-2000-050-1

Haagerup, U., 1983, All nuclear 𝐶*-algebras are amenable, Invent. Math., 74, 305, 10.1007/BF01394319

Haagerup, Uffe, 1987, Connes’ bicentralizer problem and uniqueness of the injective factor of type 𝐼𝐼𝐼₁, Acta Math., 158, 95, 10.1007/BF02392257

ha3 Haagerup, U.: Quasi-traces on exact 𝐶*-algebras are traces, preprint (1991).

Jiang, Xinhui, 1999, On a simple unital projectionless 𝐶*-algebra, Amer. J. Math., 121, 359, 10.1353/ajm.1999.0012

kegi Kerr, D., and Giol, J.: Subshifts and perforation, preprint (2007).

K Kirchberg, E.: The classification of purely infinite 𝐶*-algebras using Kasparov’s theory, in preparation for Fields Inst. Monograph.

Kirchberg, Eberhard, 1977, 𝐶*-nuclearity implies CPAP, Math. Nachr., 76, 203, 10.1002/mana.19770760115

Kirchberg, Eberhard, 2000, Embedding of exact 𝐶*-algebras in the Cuntz algebra 𝒪₂, J. Reine Angew. Math., 525, 17, 10.1515/crll.2000.065

Kirchberg, Eberhard, 2004, Covering dimension and quasidiagonality, Internat. J. Math., 15, 63, 10.1142/S0129167X04002119

Lance, E. C., 1995, Hilbert $C^*$-modules, 210, 10.1017/CBO9780511526206

Lin, Huaxin, 2001, The tracial topological rank of 𝐶*-algebras, Proc. London Math. Soc. (3), 83, 199, 10.1112/plms/83.1.199

Lin, Huaxin, 2004, Classification of simple 𝐶*-algebras of tracial topological rank zero, Duke Math. J., 125, 91, 10.1215/S0012-7094-04-12514-X

Li2 Lin, H.: Simple nuclear 𝐶*-algebras of tracial topological rank one, electronic preprint, arXiv:math/0401240 (2004).

lp Lin, Q., and Phillips, N. C.: Inductive limit decompositions of 𝐶*-dynamical systems, in preparation.

Manuilov, V. M., 2005, Hilbert $C^*$-modules, 226, 10.1090/mmono/226

ni1 Niu, Z.: A classification of certain tracially approximately subhomogeneous 𝐶*-algebras, Ph.D. thesis, University of Toronto, 2005.

Niu, Zhuang, 2004, On the classification of Tai algebras, C. R. Math. Acad. Sci. Soc. R. Can., 26, 18

Perera, Francesc, 1997, The structure of positive elements for 𝐶*-algebras with real rank zero, Internat. J. Math., 8, 383, 10.1142/S0129167X97000196

Perera, Francesc, 2007, Recasting the Elliott conjecture, Math. Ann., 338, 669, 10.1007/s00208-007-0093-3

Kirchberg, Eberhard, 2000, Embedding of exact 𝐶*-algebras in the Cuntz algebra 𝒪₂, J. Reine Angew. Math., 525, 17, 10.1515/crll.2000.065

ph Phillips, N. C.: Every simple higher dimensional noncommutative torus is an A𝕋-algebra, arXiv preprint math.OA/0609783 (2006).

R1 Rørdam, M.: Classification of Nuclear 𝐶*-Algebras, Encyclopaedia of Mathematical Sciences 126, Springer-Verlag, Berlin, Heidelberg, 2002.

Rørdam, Mikael, 2003, A simple 𝐶*-algebra with a finite and an infinite projection, Acta Math., 191, 109, 10.1007/BF02392697

Rørdam, Mikael, 2004, The stable and the real rank of 𝒵-absorbing 𝒞*-algebras, Internat. J. Math., 15, 1065, 10.1142/S0129167X04002661

Rørdam, Mikael, 1997, Stability of 𝐶*-algebras is not a stable property, Doc. Math., 2, 375, 10.4171/dm/35

Rørdam, Mikael, 1992, On the structure of simple 𝐶*-algebras tensored with a UHF-algebra. II, J. Funct. Anal., 107, 255, 10.1016/0022-1236(92)90106-S

Thomsen, Klaus, 1992, Inductive limits of interval algebras: unitary orbits of positive elements, Math. Ann., 293, 47, 10.1007/BF01444702

Toms, Andrew, 2005, On the independence of 𝐾-theory and stable rank for simple 𝐶*-algebras, J. Reine Angew. Math., 578, 185, 10.1515/crll.2005.2005.578.185

To2 Toms, A. S.: On the classification problem for nuclear 𝐶*-algebras, to appear in Ann. of Math. (2).

To4 Toms, A. S.: An infinite family of non-isomorphic 𝐶*-algebras with identical 𝐾-theory, to appear in Trans. Amer. Math. Soc.

Toms, Andrew S., 2006, Cancellation does not imply stable rank one, Bull. London Math. Soc., 38, 1005, 10.1112/S0024609306018807

To6 Toms, A. S.: Stability in the Cuntz semigroup of a commutative 𝐶*-algebra, to appear in Proc. London Math. Soc.

Toms, Andrew S., 2007, Strongly self-absorbing 𝐶*-algebras, Trans. Amer. Math. Soc., 359, 3999, 10.1090/S0002-9947-07-04173-6

TW2 Toms, A. S., and Winter, W.: 𝒵-stable ASH algebras, to appear in Canad. J. Math.

TW3 Toms. A. S., and Winter, W.: The Elliott conjecture for Villadsen algebras of the first type, arXiv preprint math.OA/0611059 (2006).

Villadsen, Jesper, 1998, Simple 𝐶*-algebras with perforation, J. Funct. Anal., 154, 110, 10.1006/jfan.1997.3168

Villadsen, Jesper, 1999, On the stable rank of simple 𝐶*-algebras, J. Amer. Math. Soc., 12, 1091, 10.1090/S0894-0347-99-00314-8

Winter, Wilhelm, 2005, On topologically finite-dimensional simple 𝐶*-algebras, Math. Ann., 332, 843, 10.1007/s00208-005-0657-z

Winter, Wilhelm, 2007, Simple 𝐶*-algebras with locally finite decomposition rank, J. Funct. Anal., 243, 394, 10.1016/j.jfa.2006.11.001