Regular approximation of singular Sturm–Liouville problems with eigenparameter dependent boundary conditions

Springer Science and Business Media LLC - Tập 2020 - Trang 1-13 - 2020
Maozhu Zhang1, Kun Li2, Hongxiang Song1
1College of Mathematics and Statistics, Taishan University, Taian, China
2School of Mathematics Sciences, Qufu Normal University, Qufu, China

Tóm tắt

In this paper we consider singular Sturm–Liouville problems with eigenparameter dependent boundary conditions and two singular endpoints. The spectrum of such problems can be approximated by those of the inherited restriction operators constructed. Via the abstract operator theory, the strongly resolvent convergence and norm resolvent convergence of a sequence of operators are obtained and it follows that the spectral inclusion of spectrum holds. Moreover, spectral exactness of spectrum holds for two special cases.

Tài liệu tham khảo

Bailey, P.B., Everitt, W.N., Weidmann, J., Zettl, A.: Regular approximations of singular Sturm–Liouville problems. Results Math. 23, 3–22 (1993) Bailey, P.B., Everitt, W.N., Zettl, A.: The SLEIGN2 Sturm–Liouville code, ACM TOMS. ACM Trans. Math. Softw. 21, 1–15 (2001) Binding, P.A., Browne, P.J., Seddighi, K.: Sturm–Liouville problems with eigenparameter dependent boundary conditions. Proc. Edinb. Math. Soc. 37(2), 57–72 (1993) Binding, P.A., Browne, P.J., Watson, B.A.: Equivalence of inverse Sturm–Liouville problems with boundary conditions rationally dependent on the eigenparameter. J. Math. Anal. Appl. 291, 246–261 (2004) Brown, M., Greenberg, L., Marletta, M.: Convergence of regular approximations to the spectra of singular fourth order Sturm–Liouville problems. Proc. R. Soc. Edinb., Sect. A 128(5), 907–944 (1998) Cai, J., Zheng, Z.: Matrix representations of Sturm–Liouville problems with coupled eigenparameter-dependent boundary conditions and transmission conditions. Math. Methods Appl. Sci. 41, 3495–3508 (2018) El-Gebeily, M.A.: Regular approximation of singular self-adjoint differential operators. IMA J. Appl. Math. 68, 471–489 (2003) Fulton, C.T.: Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proc. R. Soc. Edinb. A 77, 293–308 (1977) Fulton, C.T.: Singular eigenvalue problems with eigenvalue parameter contained in the boundary conditions. Proc. R. Soc. Edinb. A 87, 1–34 (1980) Kato, T.: Pertubation Theory for Linear Operators, 2nd edn. Springer, Heidelberg (1980) Mukhtarov, O.S., Aydemir, K.: Eigenfunction expansion for Sturm–Liouville problems with transmission conditions at one interior point. Acta Math. Sci. Ser. B Engl. Ed. 35(3), 639–649 (2015) Nursultanov, M., Rozenblum, G.: Eigenvalue asymptotics for the Sturm–Liouville operator with potential having a strong local negative singularity. Opusc. Math. 37(1), 109–139 (2017) Papageorgiou, N., Radulescu, V., Repovs, D.: Nonlinear Analysis—Theory and Methods. Springer Monographs in Mathematics. Springer, Cham (2019) Radulescu, V.: Finitely many solutions for a class of boundary value problems with superlinear convex nonlinearity. Arch. Math. (Basel) 84(6), 538–550 (2005) Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis. Academic Press, San Diego (1972) Teschl, G.: On the approximation of isolated eigenvalues of ordinary differential operators. Proc. Am. Math. Soc. 136(7), 2473–2476 (2008) Walter, J.: Regular eigenvalue problems with eigenvalue parameter in the boundary condition. Math. Z. 133, 301–312 (1973) Weidmann, J.: Linear Operators in Hilbert Space. Springer, New York (1980) Weidmann, J.: Spectral Theory of Ordinary Differential Operators. Lectures Notes in Math., vol. 1258. Springer, Berlin (1987) Yang, C., Bondarenko, N., Xu, X.: An inverse problem for the Sturm–Liouville pencil with arbitrary entire functions in the boundary condition. Inverse Probl. Imaging 14(1), 153–169 (2020) Zettl, A.: Sturm–Liouville Theory. Mathematical Surveys Monographs, vol. 121. Am. Math. Soc., Providence (2005) Zhang, M.: Regular approximation of singular Sturm–Liouville problems with transmission conditions. Appl. Math. Comput. 247, 511–520 (2014) Zhang, M., Li, K., Wang, Y.: Regular approximation of linear Hamiltonian operators with two singular endpoints. J. Math. Anal. Appl. (2020). https://doi.org/10.1016/j.jmaa.2019.123758 Zhang, M., Sun, J., Zettl, A.: The spectrum of singular Sturm–Liouville problems with eigenparameter dependent boundary conditions and its approximation. Results Math. 63, 1311–1330 (2013) Zhang, M., Sun, J., Zettl, A.: Eigenvalues of limit-point Sturm–Liouville problems. J. Math. Anal. Appl. 419, 627–642 (2014) Zheng, Z., Cai, J., Li, K., Zhang, M.: A discontinuous Sturm–Liouville problem with boundary conditions rationally dependent on the eigenparameter. Bound. Value Probl. 2018, 103 (2018). https://doi.org/10.1186/s13661-018-1023-x