Regression Shrinkage and Selection via The Lasso: A Retrospective
Tóm tắt
Từ khóa
Tài liệu tham khảo
Barlow, 1972, Statistical Inference under Order Restrictions; the Theory and Applications of Isotonic Regression
Breiman, 1995, Better subset selection using the non-negative garotte, Technometrics, 37, 738, 10.1080/00401706.1995.10484371
Candes, 2006, Compressive sampling, Proc. Int. Congr. Mathematicians, Madrid.
Candes, 2007, The dantzig selector statistical estimation when p is much larger than n, Ann. Statist., 35, 2313
Candès, 2009, The power of convex relaxation: near-optimal matrix completion
Chen, 1998, Atomic decomposition by basis pursuit, SIAM J. Scient. Comput., 43, 33, 10.1137/S1064827596304010
Donoho, 2004, Technical Report
Efron, 2002, Technical Report.
Frank, 1993, A statistical view of some chemometrics regression tools (with discussion), Technometrics, 35, 109, 10.1080/00401706.1993.10485033
Friedman, 2007, Pathwise coordinate optimization, Ann. Appl. Statist., 2, 302
Friedman, 2010, Regularization paths for generalized linear models via coordinate descent, J. Statist. Sofwr., 33
Fu, 1998, Penalized regressions: the bridge vs. the lasso, J. Computnl Graph. Statist., 7, 397
Genkin, 2007, Large-scale Bayesian logistic regression for text categorization, Technometrics, 49, 291, 10.1198/004017007000000245
Hastie, 2008, The Elements of Statistical Learning; Data Mining, Inference and Prediction
Jolliffe, 2003, A modified principal.component technique based on the lasso, J. Computnl Graph. Statist., 12, 531, 10.1198/1061860032148
Mazumder, 2010, Spectral regularization algorithms for learning large incomplete matrices, J.Mach. Learn. Res., 11, 2287
Osborne, 2000, On the lasso and its dual, J. Computnl Graph. Statist., 9, 319
Tibshirani, 2005, Sparsity and smoothness via the fused lasso, J. R. Statist. Soc. B, 67, 91, 10.1111/j.1467-9868.2005.00490.x
Witten, 2009, A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis, Biometrika, 10, 515
Wu, 2008, Coordinate descent procedures for lasso penalized regression, Ann. Appl. Statist., 2, 224, 10.1214/07-AOAS147
Yuan, 2007, Model selection and estimation in regression with grouped variables, J. R. Statist. Soc. B, 68, 49, 10.1111/j.1467-9868.2005.00532.x
Yuan, 2007, Model selection and estimation in the Gaussian graphical model, Biometrika, 94, 19, 10.1093/biomet/asm018
Zou, 2006, The adaptive lasso and its oracle properties, J. Am. Statist. Ass., 101, 1418, 10.1198/016214506000000735
Zou, 2005, Regularization and variable selection via the elastic net, J. R. Statist. Soc. B, 67, 301, 10.1111/j.1467-9868.2005.00503.x
Allen, 2010, Transposable regularized covariance models with an application to missing data imputation, Ann. Appl. Statist., 4, 764, 10.1214/09-AOAS314
Benjamini, 1995, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. R. Statist. Soc. B, 57, 289
Bickel, 2009, Simultaneous analysis of Lasso and Dantzig selector, Ann. Statist., 37, 1705, 10.1214/08-AOS620
Bondell, 2010, Joint variable selection of fixed and random effects in linear mixed-effects models, Biometrics, 66, 10.1111/j.1541-0420.2010.01391.x
Bühlmann, 2011, Statistics for High-dimensional Data: Methods, Theory and Applications, 10.1007/978-3-642-20192-9
Bunea, 2007, Sparsity oracle inequalities for the Lasso, Electron. J. Statist., 1, 169, 10.1214/07-EJS008
Candès, 2008, Enhancing sparsity by reweighted l1 minimization, J. Four. Anal. Appl., 14, 877, 10.1007/s00041-008-9045-x
Donoho, 2006, Stable recovery of sparse overcomplete representations in the presence of noise, IEEE Trans. Inform. Theor., 52, 6, 10.1109/TIT.2005.860430
Donoho, 1994, Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81, 425, 10.1093/biomet/81.3.425
Efron, 1979, Bootstrap methods: another look at the Jackknife, Ann. Statist., 7, 1, 10.1214/aos/1176344552
Fan, 2005, Variable selection via nonconcave penalized likelihood and its oracle properties, J. Am. Statist. Ass., 96, 1348, 10.1198/016214501753382273
Fu, 1998, Penalized regressions: the Bridge versus the Lasso, J. Computnl Graph. Statist., 7, 397
van de Geer, 2007, Proc. Jt Statist. Meet., 140
van de Geer, 2008, High-dimensional generalized linear models and the Lasso, Ann. Statist., 36, 614, 10.1214/009053607000000929
van de Geer, 2009, On the conditions used to prove oracle results for the Lasso, Electron. J. Statist., 3, 1360, 10.1214/09-EJS506
George, 1993, Variable selection via gibbs sampling, J. Am. Statist. Ass., 88, 884, 10.1080/01621459.1993.10476353
Green, 1995, Reversible jump Markov chain Monte Carlo computation and Bayesian model determination, Biometrika, 82, 711, 10.1093/biomet/82.4.711
Greenshtein, 2004, Persistence in high-dimensional predictor selection and the virtue of over-parametrization, Bernoulli, 10, 971, 10.3150/bj/1106314846
Holmes, 2007, Bayesian Statistics 8
Khalili, 2007, Variable selection in finite mixture of regression models, J. Am. Statist. Ass., 102, 1025, 10.1198/016214507000000590
Mazumder, 2010, Sparsenet: coordinate descent with non-convex penalties
Meier, 2008, The group lasso for logistic regression, J. R. Statist. Soc. B, 70, 53, 10.1111/j.1467-9868.2007.00627.x
Meinshausen, 2006, High-dimensional graphs and variable selection with the lasso, Ann. Statist., 34, 1436, 10.1214/009053606000000281
Meinshausen, 2010, Stability selection (with discussion), J. R. Statist. Soc. B, 72, 417, 10.1111/j.1467-9868.2010.00740.x
Meinshausen, 2009, P-values for high-dimensional regression, J. Am. Statist. Ass., 104, 1671, 10.1198/jasa.2009.tm08647
Ming, 2006, Model selection and estimation in regression with grouped variables, J. R. Statist. Soc. B, 68, 49, 10.1111/j.1467-9868.2005.00532.x
Sardy, 2000, Block coordinate relaxation methods for nonparametric wavelet denoising, J. Computnl Graph. Statist., 9, 361
Sardy, 2004, On the statistical analysis of smoothing by maximizing dirty Markov random field posterior distributions, J. Am. Statist. Ass., 99, 191, 10.1198/016214504000000188
Schelldorfer, 2011, Estimation for high-dimensional linear mixed-effects models using l1-penalization, Scand. J. Statist., 10.1111/j.1467-9469.2011.00740.x
Städler, 2011, Missing values: sparse inverse covariance estimation and an extension to sparse regression, Statist. Comput.
Städler, 2010, l1-penalization for mixture regression models (with discussion), Test, 19, 209, 10.1007/s11749-010-0197-z
Tibshirani, 1996, Regression shrinkage and selection via the lasso, J. R. Statist. Soc. B, 58, 267
Tseng, 2001, Convergence of a block coordinate descent method for nonsmooth separable minimization, J. Optimzn Theor. Appl., 109, 475, 10.1023/A:1017501703105
Tseng, 2009, A coordinate gradient descent method for nonsmooth separable minimization, Math. Programing B, 117, 387, 10.1007/s10107-007-0170-0
Witten, 2009, Covariance-regularized regression and classification for high dimensional problems, J. R. Statist. Soc. B, 71, 615, 10.1111/j.1467-9868.2009.00699.x
Yuan, 2006, Model selection and estimation in regression with grouped variables, J. R. Statist. Soc. B, 68, 49, 10.1111/j.1467-9868.2005.00532.x
Zhang, 2010, Nearly unbiased variable selection under minimax concave penalty, Ann. Statist., 38, 894, 10.1214/09-AOS729
Zhao, 2006, On model selection consistency of Lasso, J. Mach. Learn. Res., 7, 2541
Zou, 2006, The adaptive Lasso and its oracle properties, J. Am. Statist. Ass., 101, 1418, 10.1198/016214506000000735
Zou, 2005, Regularization and variable selection via the elastic net, J. R. Statist. Soc. B, 67, 301, 10.1111/j.1467-9868.2005.00503.x
Zou, 2008, One-step sparse estimates in nonconcave penalized likelihood models, Ann. Statist., 36, 1509