Regeneration of multiple shoots from transgenic potato events facilitates the recovery of phenotypically normal lines: assessing a cry9Aa2 gene conferring insect resistance
Tóm tắt
The recovery of high performing transgenic lines in clonal crops is limited by the occurrence of somaclonal variation during the tissue culture phase of transformation. This is usually circumvented by developing large populations of transgenic lines, each derived from the first shoot to regenerate from each transformation event. This study investigates a new strategy of assessing multiple shoots independently regenerated from different transformed cell colonies of potato (Solanum tuberosum L.). A modified cry9Aa2 gene, under the transcriptional control of the CaMV 35S promoter, was transformed into four potato cultivars using Agrobacterium-mediated gene transfer using a nptII gene conferring kanamycin resistance as a selectable marker gene. Following gene transfer, 291 transgenic lines were grown in greenhouse experiments to assess somaclonal variation and resistance to potato tuber moth (PTM), Phthorimaea operculella (Zeller). Independently regenerated lines were recovered from many transformed cell colonies and Southern analysis confirmed whether they were derived from the same transformed cell. Multiple lines regenerated from the same transformed cell exhibited a similar response to PTM, but frequently exhibited a markedly different spectrum of somaclonal variation. A new strategy for the genetic improvement of clonal crops involves the regeneration and evaluation of multiple shoots from each transformation event to facilitate the recovery of phenotypically normal transgenic lines. Most importantly, regenerated lines exhibiting the phenotypic appearance most similar to the parental cultivar are not necessarily derived from the first shoot regenerated from a transformed cell colony, but can frequently be a later regeneration event.
Tài liệu tham khảo
Romeis J, Shelton AM, Kennedy GG, (Eds): Integration of Insect-Resistant Genetically Modified Crops within IPM Programs. 2008, New York: Springer
Conner AJ, Christey MC: Plant breeding and seed marketing options for the introduction of transgenic insect-resistant crops. Biocontrol Sci Technol. 1994, 4: 463-473. 10.1080/09583159409355358.
Conner AJ: Field-testing of transgenic potatoes. Potato Biology and Biotechnology: Advances and Perspectives. Edited by: Vreugdenhil D. 2007, Amsterdam: Elsevier, 687-703.
Barrell PJ, Conner AJ: A strategy to facilitate the recovery of phenotypically normal transgenic lines in clonal crops. Theor Appl Genet. 2011, 122: 1171-1177. 10.1007/s00122-010-1521-4.
Larkin PJ, Scowcroft WR: Somaclonal variation - a novel source of variability from cell cultures for plant improvement. Theor Appl Genet. 1981, 60: 197-214. 10.1007/BF02342540.
Lee ML, Phillips RL: The chromosomal basis of somaclonal variation. Annu Rev Plant Physiol Plant Mol Biol. 1988, 39: 413-437. 10.1146/annurev.pp.39.060188.002213.
Veilleux RE, Johnson AT: Somaclonal variation: molecular analysis, transformation interaction, and utilization. Plant Breed Rev. 1998, 16: 229-268.
Evans DA, Sharp WR: Somaclonal and gametoclonal variation. Handbook of Plant Cell Culture. Edited by: Evans DA, Sharp WR, Ammirato PV. 1988, New York: Macmillan Publishing Company, 4: 97-132.
Dale PJ, McPartlan HC: Field performance of transgenic potato plants compared with controls regenerated from tuber discs and shoot cuttings. Theor Appl Genet. 1992, 84: 585-591.
Jongedijk E, de Schutter AAJM, Stolte T, van den Elzen PJM, Cornelissen BJC: Increased resistance to potato virus × and preservation of cultivar properties in transgenic potato under field conditions. Biotechnology. 1992, 10: 422-429. 10.1038/nbt0492-422.
Belknap WR, Corsini D, Pavek JJ, Snyder GW, Rockhold DR, Vayda ME: Field performance of transgenic Russet Burbank and Lemhi Russet potatoes. Am Potato J. 1994, 71: 285-296. 10.1007/BF02849055.
Conner AJ, Williams MK, Abernethy DJ, Fletcher PJ, Genet RA: Field performance of transgenic potatoes. N Z J Crop Hortic Sci. 1994, 22: 361-371. 10.1080/01140671.1994.9513847.
Heeres P, Schippers-Rozenboom M, Jacobsen E, Visser RGF: Transformation of a large number of potato varieties: genotype-dependent variation in efficiency and somaclonal variation. Euphytica. 2002, 124: 13-22. 10.1023/A:1015689112703.
Davidson MM, Jacobs JME, Reader JK, Butler RC, Frater CM, Markwick NP, Wratten SD, Conner AJ: Development and evaluation of potatoes transgenic for a cry1Ac9 gene conferring resistance to potato tuber moth. J Am Soc Hort Sci. 2002, 127: 590-596.
Davidson MM, Takla MFG, Reader JK, Butler RC, Wratten SD, Conner AJ: Evaluation of field grown potato lines transgenic for a cry1Ac9 gene conferring resistance to potato tuber moth. N Z Plant Prot. 2002, 55: 405-410.
Meiyalaghan S, Jacobs JME, Butler RC, Wratten SD, Conner AJ: Expression of cry1Ac9 and cry9Aa2 genes under a potato light-inducible Lhca3 promoter in transgenic potatoes for tuber moth resistance. Euphytica. 2006, 147: 297-309. 10.1007/s10681-005-9012-4.
Jacobs JME, Takla MFG, Docherty LC, Frater CM, Markwick NP, Meiyalaghan S, Conner AJ: Potato transformation with modified nucleotide sequences of the cry9Aa2 gene improves resistance to potato tuber moth. Potato Res. 2009, 52: 367-378. 10.1007/s11540-009-9140-7.
Murashige T, Skoog F: A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant. 1962, 15: 473-497. 10.1111/j.1399-3054.1962.tb08052.x.
Conner AJ, Williams MK, Gardner RC, Deroles SC, Shaw ML, Lancaster JE: Agrobacterium-mediated transformation of New Zealand potato cultivars. N Z J Crop Hortic Sci. 1991, 19: 1-8.
Gleave AP, Mitra DS, Markwick NP, Morris BAM, Beuning LL: Enhanced expression of the Bacillus thuringiensis cry9Aa2 gene in transgenic plants by nucleotide sequence modification confers resistance to potato tuber moth. Mol Breed. 1998, 4: 459-472. 10.1023/A:1009654400040.
Hoekema A, Hirsch PR, Hooykaas PJ, Schilperoot RA: A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature. 1983, 303: 179-180. 10.1038/303179a0.
Höfgen R, Willmitzer L: Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 1988, 16: 9877-10.1093/nar/16.20.9877.
Davidson MM, Takla MFG, Jacobs JME, Butler RC, Wratten SD, Conner AJ: Transformation of potato (Solanum tuberosum) cultivars with a cry1Ac9 gene confers resistance to potato tuber moth (Phthorimaea operculella). N Z J Crop Hortic Sci. 2004, 32: 39-50. 10.1080/01140671.2004.9514278.
Bernatzky R, Tanksley SD: Genetics of actin-related sequences in tomato. Theor Appl Genet. 1986, 72: 314-339. 10.1007/BF00288567.
Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. 1989, Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 2
GenStat Committee: The Guide to GenStat Release 11 - Parts 1-3. 2008, Oxford: VSN International
Barrell PJ, Shang YJ, Cooper PA, Conner AJ: Alternative selectable markers for potato transformation using minimal T-DNA vectors. Plant Cell Tiss Org Cult. 2002, 70: 61-68. 10.1023/A:1016013426923.
Meiyalaghan S, Jacobs JME, Butler RC, Wratten SD, Conner AJ: Transgenic potato lines expressing cry1Ba1 or cry1Ca5 genes are resistant to potato tuber moth. Potato Res. 2006, 49: 203-216.
Peferoen M, Jansens S, Reynaerts A, Leemans J: Potato plant with engineered resistance against insect attack. The Molecular and Cellular Biology of the Potato. Edited by: Vayda ME, Park WD. 1990, Wallingford, UK: CAB International, 193-204.
van Rie J, Jansens S, Reynaerts A: Engineered resistance against potato tuber moth. Advances in Potato Pest Biology and Management. Edited by: Zehnder GW, Powelson ML, Jansson RK, Raman KV. 1994, Minnesota, USA, APS Press, 499-509.
Beuning LL, Mitra DS, Markwick NP, Gleave AP: Minor modifications to the cry1Ac9 nucleotide sequence are sufficient to generate transgenic plants resistant to Phthorimaea operculella. Ann Appl Biol. 2001, 138: 281-292. 10.1111/j.1744-7348.2001.tb00113.x.
Birch RG: Plant transformation: problems and strategies for practical application. Annu Rev Plant Physiol Plant Mol Biol. 1997, 48: 297-326. 10.1146/annurev.arplant.48.1.297.