Reflecting trends in the academic landscape of sustainable energy using probabilistic topic modeling

Energy, Sustainability and Society - Tập 9 - Trang 1-23 - 2019
Manuel W. Bickel1,2
1Faculty of Sustainability, Institute of Sustainability Governance (INSUGO), Leuphana University of Lüneburg, Lüneburg, Germany
2Wuppertal Institute for Climate, Environment and Energy gGmbH, Division Sustainable Production and Consumption, Wuppertal, Germany

Tóm tắt

Facing planetary boundaries, we need a sustainable energy system providing its life support function for society in the long-term within environmental limits. Since science plays an important role in decision-making, this study examines the thematic landscape of research on sustainable energy, which may contribute to a sustainability transformation. Understanding the structure of the research field allows for critical reflections and the identification of blind spots for advancing this field. The study applies a text mining approach on 26533 Scopus-indexed abstracts published from 1990 to 2016 based on a latent Dirichlet allocation topic model. Models with up 1100 topics were created. Based on coherence scores and manual inspection, the model with 300 topics was selected. These statistical methods served for highlighting timely topic trends, differing thematic fields, and emerging communities in the topic network. The study critically reflects the quantitative results from a sustainability perspective. The study identifies a focus on establishing and optimizing the energy infrastructure towards 100% renewable energies through key modern technology areas: materials science, (biological) process engineering, and (digital) monitoring and control systems. Energy storage, photonic materials, nanomaterials, or biofuels belong to the topics with the strongest trends. The study identifies decreasing trends for general aspects regarding sustainable development and related economic, environmental, and political issues. The discourse is latently adopting a technology-oriented paradigm focusing on renewable energy generation and is moving away from the multi-faceted concept of sustainability. The field has the potential to contribute to climate change mitigation by optimizing renewable energy systems. However, given the complexity of these systems, horizontal integration of the various valuable vertical research strands is required. Furthermore, the holistic ecological perspective considering the global scale that has originally motivated research on sustainable energy might be re-strengthened, e.g., by an integrated energy and materials perspective. Beyond considering the physical dimensions of energy systems, existing links from the currently technology-oriented discourse to the social sciences might be strengthened. For establishing sustainable energy systems, future research will not only have to target the technical energy infrastructure but put a stronger focus on issues perceivable from a holistic second-order perspective.

Tài liệu tham khảo

Rockström J, Steffen W, Noone K et al (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14(2). https://doi.org/10.5751/ES-03180-140232 Steffen W, Richardson K, Rockström J et al (2015) Sustainability. Planetary boundaries: guiding human development on a changing planet. Science 347(6223):1259855. https://doi.org/10.1126/science.1259855 IPCC (2015) Climate change 2014: synthesis report: Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland Schlör H, Fischer W, Hake J-F (2015) The system boundaries of sustainability. J Cleaner Prod 88:52–60. https://doi.org/10.1016/j.jclepro.2014.04.023 Johansson TB, Patwardhan AP, Gomez-Echeverri L et al. (eds) (2012) Global energy assessment: toward a sustainable future, Cambridge University Press, Cambridge, UK and New York, NY, USA and International Institute for Applied Systems Analysis, Laxenburg, Austria Kates RW (2001) Sustainability Science. Science 292(5517):641–642. https://doi.org/10.1126/science.1059386 Clark WC, Dickson NM (2003) Sustainability science: the emerging research program. Proc. Natl. Acad. Sci. U.S.A. 100(14):8059–8061. https://doi.org/10.1073/pnas.1231333100 Heinrichs H, Martens P, Michelsen G et al. (eds) (2016) Sustainability science: an introduction, 1st ed. 2016. Springer Netherlands, Dordrecht, s.l. WCED (1987) Our common future: Brundtland Report. World Commission on Environment and Development, Oslo UN (2011) The millennium development goals report 2011. United Nations, New York UN (2018) The Sustainable Development Goals Report 2018. United Nations, New York UN (1992) Agenda 21. United Nations, New York Michelsen G, Adomßent M, Martens P et al (2016) Sustainable development – background and context. In: Heinrichs H, Martens P, Michelsen G et al (eds) Sustainability Science. Springer Netherlands, Dordrecht, pp 5–29 Robert KW, Parris TM, Leiserowitz AA (2005) What is sustainable development? Goals, indicators, values, and practice. Environment 47(3):8–21. https://doi.org/10.1080/00139157.2005.10524444 Costanza R, Daly HE (1987) Toward an ecological economics. Ecol Model 38(1-2):1–7. https://doi.org/10.1016/0304-3800(87)90041-X UN (2015) Transforming our world: the 2030 agenda for sustainable development: A/RES/70/1, United Nations, New York EC (2011) Energy roadmap 2050: COM(2011) 885. European Commission, Brussels CHN (2016) The 13th Five-Year Plan for Economic and Social Development of The People’s Republic of China, http://www.gov.cn/xinwen/2016-03/17/content_5054992.htm; http://en.ndrc.gov.cn/newsrelease/201612/P020161207645765233498.pdf Accessed 29 Aug 2018 UNDP CHN (2016) 13th Five-Year Plan: what to expect from China. ISSUE BRIEF No. 15 - Domestic Policies. United Nations Development Program China, Beijing. http://www.cn.undp.org/content/china/en/home/library/south-south-cooperation/13th-five-year-plan%2D%2Dwhat-to-expect-from-china.html Accessed 29 Aug 2018 BMWi, BMU (2010) Energiekonzept für eine umweltschonende, zuverlässige und bezahlbare Energieversorgung, Bundesministerium für Wirtschaft und Technologie, Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit Berlin. https://www.bmwi.de/Redaktion/DE/Downloads/E/energiekonzept-2010.pdf?__blob=publicationFile&v=3 Accessed 21 Oct 2018 GER (2011) Energiewende - die Gesetze. Die Bundesregierung Deutschland, Berlin, Germany. https://archiv.bundesregierung.de/archiv-de/energiewende-die-gesetze-419168 Accessed 29 Aug 2018 Gawel E, Lehmann P, Korte K et al (2014) The future of the energy transition in Germany. Energ Sustain Soc 4(1):73. https://doi.org/10.1186/s13705-014-0015-7 Fischer W, Hake J-F, Kuckshinrichs W et al (2016) German energy policy and the way to sustainability: five controversial issues in the debate on the “Energiewende”. Energy 115:1580–1591. https://doi.org/10.1016/j.energy.2016.05.069 Peidong Z, Yanli Y, Jin S et al (2009) Opportunities and challenges for renewable energy policy in China. Renewable and Sustainable Energy Reviews 13(2):439–449. https://doi.org/10.1016/j.rser.2007.11.005 Lo K (2014) A critical review of China’s rapidly developing renewable energy and energy efficiency policies. Renewable and Sustainable Energy Reviews 29:508–516. https://doi.org/10.1016/j.rser.2013.09.006 Lehmann P, Creutzig F, Ehlers M-H et al (2012) Carbon lock-out: advancing renewable energy policy in Europe. Energies 5(2):323–354. https://doi.org/10.3390/en5020323 Komiyama H, Takeuchi K (2006) Sustainability science: building a new discipline. Sustain Sci 1(1):1–6. https://doi.org/10.1007/s11625-006-0007-4 Spangenberg JH (2011) Sustainability science: a review, an analysis and some empirical lessons. Envir Conserv 38(03):275–287. https://doi.org/10.1017/S0376892911000270 Kajikawa Y, Tacoa F, Yamaguchi K (2014) Sustainability science: the changing landscape of sustainability research. Sustainability Sci 9(4):431–438 Breyer C, Gerlach A (2013) Global overview on grid-parity. Prog Photovolt Res Appl 21(1):121–136. https://doi.org/10.1002/pip.1254 Bazmi AA, Zahedi G (2011) Sustainable energy systems: role of optimization modeling techniques in power generation and supply—a review. Renewable Sustainable Energy Rev 15(8):3480–3500. https://doi.org/10.1016/j.rser.2011.05.003 Asif M, Muneer T (2007) Energy supply, its demand and security issues for developed and emerging economies. Renewable Sustainable Energy Rev 11(7):1388–1413. https://doi.org/10.1016/j.rser.2005.12.004 Muradov N, Veziroglu T (2008) “Green” path from fossil-based to hydrogen economy: an overview of carbon-neutral technologies. Int J Hydrogen Energy 33(23):6804–6839. https://doi.org/10.1016/j.ijhydene.2008.08.054 Lior N (2010) Sustainable energy development: the present (2009) situation and possible paths to the future. Energy 35(10):3976–3994. https://doi.org/10.1016/j.energy.2010.03.034 Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488(7411):294–303. https://doi.org/10.1038/nature11475 Kuvlesky WP, Brennan LA, Morrison ML et al (2007) Wind energy development and wildlife conservation: challenges and opportunities. J Wildlife Manag 71(8):2487–2498. https://doi.org/10.2193/2007-248 Baños R, Manzano-Agugliaro F, Montoya FG et al (2011) Optimization methods applied to renewable and sustainable energy: a review. Renewable Sustainable Energy Rev 15(4):1753–1766. https://doi.org/10.1016/j.rser.2010.12.008 Evans A, Strezov V, Evans TJ (2012) Assessment of utility energy storage options for increased renewable energy penetration. Renewable Sustainable Energy Rev 16(6):4141–4147. https://doi.org/10.1016/j.rser.2012.03.048 Yoo HD, Markevich E, Salitra G et al (2014) On the challenge of developing advanced technologies for electrochemical energy storage and conversion. Mater Today 17(3):110–121. https://doi.org/10.1016/j.mattod.2014.02.014 Larcher D, Tarascon J-M (2015) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7(1):19–29. https://doi.org/10.1038/nchem.2085 Lund H, Werner S, Wiltshire R et al (2014) 4th Generation District Heating (4GDH). Energy 68:1–11. https://doi.org/10.1016/j.energy.2014.02.089 Lund H, Andersen AN, Østergaard PA et al (2012) From electricity smart grids to smart energy systems – a market operation based approach and understanding. Energy 42(1):96–102. https://doi.org/10.1016/j.energy.2012.04.003 Sims R, Hastings A, Schlamadinger B et al (2006) Energy crops: current status and future prospects. Global Change Biol 12(11):2054–2076. https://doi.org/10.1111/j.1365-2486.2006.01163.x Purnick PEM, Weiss R (2009) The second wave of synthetic biology: from modules to systems. Nat Rev Mol Cell Biol 10(6):410–422. https://doi.org/10.1038/nrm2698 Himmel ME, Ding S-Y, Johnson DK et al (2007) Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science 315(5813):804–807. https://doi.org/10.1126/science.1137016 Agbor VB, Cicek N, Sparling R et al (2011) Biomass pretreatment: fundamentals toward application. Biotechnol Adv 29(6):675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005 Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315(5813):808–810. https://doi.org/10.1126/science.1137013 Fernando S, Adhikari S, Chandrapal C et al (2006) Biorefineries: current status, challenges, and future direction. Energy Fuels 20(4):1727–1737. https://doi.org/10.1021/ef060097w Logan BE, Call D, Cheng S et al (2008) Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ Sci Technol 42(23):8630–8640. https://doi.org/10.1021/es801553z Ahmad AL, Yasin NM, Derek CJC et al (2011) Microalgae as a sustainable energy source for biodiesel production: a review. Renewable Sustainable Energy Rev 15(1):584–593. https://doi.org/10.1016/j.rser.2010.09.018 Patil V, Tran K-Q, Giselrød HR (2008) Towards sustainable production of biofuels from microalgae. Int J Mol Sci 9(7):1188–1195. https://doi.org/10.3390/ijms9071188 Wigmosta MS, Coleman AM, Skaggs RJ et al (2011) National microalgae biofuel production potential and resource demand. Water Resour Res 47(3):294. https://doi.org/10.1029/2010WR009966 Franks AE, Nevin KP (2010) Microbial fuel cells, a current review. Energies 3(5):899–919. https://doi.org/10.3390/en3050899 Oliveira VB, Simões M, Melo LF et al (2013) Overview on the developments of microbial fuel cells. Biochem Eng J 73:53–64. https://doi.org/10.1016/j.bej.2013.01.012 Pant D, Singh A, van Bogaert G et al (2012) Bioelectrochemical systems (BES) for sustainable energy production and product recovery from organic wastes and industrial wastewaters. RSC Adv 2(4):1248–1263. https://doi.org/10.1039/C1RA00839K Logan BE, Rabaey K (2012) Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337(6095):686–690. https://doi.org/10.1126/science.1217412 Turner JA (2004) Sustainable hydrogen production. Science 305(5686):972–974. https://doi.org/10.1126/science.1103197 Dutta S (2014) A review on production, storage of hydrogen and its utilization as an energy resource. J Industr Eng Chem 20(4):1148–1156. https://doi.org/10.1016/j.jiec.2013.07.037 Hosseini SE, Wahid MA (2016) Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renewable Sustainable Energy Rev 57:850–866. https://doi.org/10.1016/j.rser.2015.12.112 Midilli A, Ay M, Dincer I et al (2005) On hydrogen and hydrogen energy strategies. Renewable Sustainable Energy Rev 9(3):255–271. https://doi.org/10.1016/j.rser.2004.05.003 Katsounaros I, Cherevko S, Zeradjanin AR et al (2014) Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew Chem Int Ed Engl 53(1):102–121. https://doi.org/10.1002/anie.201306588 Leary R, Westwood A (2011) Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 49(3):741–772. https://doi.org/10.1016/j.carbon.2010.10.010 Chu S, Cui Y, Liu N (2016) The path towards sustainable energy. Nat Mater 16(1):16–22. https://doi.org/10.1038/nmat4834 Izumi Y (2013) Recent advances in the photocatalytic conversion of carbon dioxide to fuels with water and/or hydrogen using solar energy and beyond. Coord Chem Rev 257(1):171–186. https://doi.org/10.1016/j.ccr.2012.04.018 Jiang Z, Xiao T, Kuznetsov VL et al (2010) Turning carbon dioxide into fuel. Philos Trans A Math Phys Eng Sci 368(1923):3343–3364. https://doi.org/10.1098/rsta.2010.0119 Ganesh I (2014) Conversion of carbon dioxide into methanol – a potential liquid fuel: fundamental challenges and opportunities (a review). Renewable Sustainable Energy Rev 31:221–257. https://doi.org/10.1016/j.rser.2013.11.045 Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7(2):105–114. https://doi.org/10.1038/nmat2090 Serrano E, Rus G, García-Martínez J (2009) Nanotechnology for sustainable energy. Renewable Sustainable Energy Rev 13(9):2373–2384. https://doi.org/10.1016/j.rser.2009.06.003 Candelaria SL, Shao Y, Zhou W et al (2012) Nanostructured carbon for energy storage and conversion. Nano Energy 1(2):195–220. https://doi.org/10.1016/j.nanoen.2011.11.006 Jena P (2011) Materials for hydrogen storage: past, present, and future. J Phys Chem Lett 2(3):206–211. https://doi.org/10.1021/jz1015372 Wang D-W, Su D (2014) Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ Sci 7(2):576. https://doi.org/10.1039/c3ee43463j Xia W, Mahmood A, Liang Z et al (2016) Earth-abundant nanomaterials for oxygen reduction. Angew Chem Int Ed Engl 55(8):2650–2676. https://doi.org/10.1002/anie.201504830 Zhang W, Lai W, Cao R (2017) Energy-related small molecule activation reactions: oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem Rev 117(4):3717–3797. https://doi.org/10.1021/acs.chemrev.6b00299 Tahir M, Pan L, Idrees F et al (2017) Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37:136–157. https://doi.org/10.1016/j.nanoen.2017.05.022 Wang H, Zhu Q-L, Zou R et al (2017) Metal-organic frameworks for energy applications. Chem 2(1):52–80. https://doi.org/10.1016/j.chempr.2016.12.002 Lu Q, Yu Y, Ma Q et al (2016) 2D Transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv Mater Weinheim 28(10):1917–1933. https://doi.org/10.1002/adma.201503270 Liu Z, Xu J, Chen D et al (2015) Flexible electronics based on inorganic nanowires. Chem Soc Rev 44(1):161–192. https://doi.org/10.1039/C4CS00116H Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1(2):205. https://doi.org/10.1039/b809074m Ambrosi A, Chua CK, Bonanni A et al (2014) Electrochemistry of graphene and related materials. Chem Rev 114(14):7150–7188. https://doi.org/10.1021/cr500023c GhaffarianHoseini A, Dahlan ND, Berardi U et al (2013) Sustainable energy performances of green buildings: a review of current theories, implementations and challenges. Renewable Sustainable Energy Rev 25:1–17. https://doi.org/10.1016/j.rser.2013.01.010 Vesborg PCK, Jaramillo TF (2012) Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv 2(21):7933. https://doi.org/10.1039/c2ra20839c Frederiks ER, Stenner K, Hobman EV (2015) Household energy use: applying behavioural economics to understand consumer decision-making and behaviour. Renewable Sustainable Energy Rev 41:1385–1394. https://doi.org/10.1016/j.rser.2014.09.026 Wang J-J, Jing Y-Y, Zhang C-F et al (2009) Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable Sustainable Energy Rev 13(9):2263–2278. https://doi.org/10.1016/j.rser.2009.06.021 Pohekar SD, Ramachandran M (2004) Application of multi-criteria decision making to sustainable energy planning—a review. Renewable Sustainable Energy Rev 8(4):365–381. https://doi.org/10.1016/j.rser.2003.12.007 Blei DM, Lafferty JD (2007) A correlated topic model of Science. Ann Appl Stat 1(1):17–35. https://doi.org/10.1214/07-AOAS114 Kajikawa Y, Yoshikawa J, Takeda Y et al (2008) Tracking emerging technologies in energy research: toward a roadmap for sustainable energy. Technol Forecasting Soc Change 75(6):771–782. https://doi.org/10.1016/j.techfore.2007.05.005 D’Amato D, Droste N, Allen B et al (2017) Green, circular, bio economy: a comparative analysis of sustainability avenues. J Clean Prod 168:716–734. https://doi.org/10.1016/j.jclepro.2017.09.053 Griffiths TL, Steyvers M (2004) Finding scientific topics. Proc Natl Acad Sci U.S.A. 101(Suppl 1):5228–5235. https://doi.org/10.1073/pnas.0307752101 Bickel MW (2017) A new approach to semantic sustainability assessment: text mining via network analysis revealing transition patterns in German municipal climate action plans. Energ Sustain Soc 7(1):641. https://doi.org/10.1186/s13705-017-0125-0 Blake C (2011) Text mining. Ann. Rev. Info. Sci. Tech. 45(1): 121–155. doi: https://doi.org/10.1002/aris.2011.1440450110 Fayyad U, Piatetsky-Shapiro G, Smyth P (1996) From data mining to knowledge discovery in databases. AI Mag 17(3):37–53 Usai A, Pironti M, Mital M et al (2018) Knowledge discovery out of text data: a systematic review via text mining. J Knowledge Manag 22(7):1471–1488. https://doi.org/10.1108/JKM-11-2017-0517 Blei DM (2012) Probabilistic topic models. Commun ACM 55(4):77–84. https://doi.org/10.1145/2133806.2133826 Steyvers M, Griffiths TL (2007) Probabilistic topic models. In: Landauer TK, McNamara DS, Dennis S et al. (eds) Handbook of Latent Semantic Analysis. Taylor and Francis, Hoboken, pp 424–440 Hofmann T (1999) Probabilistic latent semantic analysis. In: Laskey KB (ed) Uncertainty in artificial intelligence: Proceedings of the fifteenth conference (1999), July 30 - August 1, 1999, Royal Institute of Technology (KTH), Stockholm, Sweden. Morgan Kaufmann, San Francisco, Calif., pp 289–296 Jiang H, Qiang M, Lin P (2016) A topic modeling based bibliometric exploration of hydropower research. Renewable Sustainable Energy Rev 57:226–237. https://doi.org/10.1016/j.rser.2015.12.194 Sun L, Yin Y (2017) Discovering themes and trends in transportation research using topic modeling. Transport Res Part C Emerg Technol 77:49–66. https://doi.org/10.1016/j.trc.2017.01.013 Hassan S-U, Haddawy P (2015) Analyzing knowledge flows of scientific literature through semantic links: a case study in the field of energy. Scientometrics 103(1):33–46. https://doi.org/10.1007/s11192-015-1528-3 R Core Team (2018) R: a language and environment for statistical computing. https://www.R-project.org/ Bickel MW (2019) textility - an R package for applied text mining with an example of topic modelling in the field of research on sustainable energy Ball R, Tunger D (2007) Science indicators revisited – Science Citation Index versus SCOPUS: a bibliometric comparison of both citation databases. ISU 26(4):293–301. https://doi.org/10.3233/ISU-2006-26404 Archambault É, Campbell D, Gingras Y et al (2009) Comparing bibliometric statistics obtained from the Web of Science and Scopus. J Am Soc Inf Sci 60(7):1320–1326. https://doi.org/10.1002/asi.21062 Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3(Jan):993–1022 Schmid H (1994) Probabilistic part-of-speech tagging using decision trees. In: Proceedings of International Conference on New Methods in Language Processing, Manchester, UK Schmid H (1995) Improvements in part-of-speech tagging with an application to German. In: Proceedings of the ACL SIGDAT-Workshop, Dublin, Ireland Schmid H (1994) TreeTagger - a part-of-speech tagger for many languages. Ludwig-Maximilians-Universität Munich Michalke M (2017) koRpus: an R package for text analysis Hore C, Asahara M, Matsumoto Y (2005) Automatic extraction of fixed multiword expressions. In: Hutchison D, Kanade T, Kittler J et al. (eds) Natural Language Processing – IJCNLP 2005, vol 3651. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 565–575 Church KW, Hanks P (1990) Word association norms, mutual information, and lexicography. Comput Linguist 16(1):22–29 Thanopoulos A, Fakotakis N, Kokkinakis G (2002) Comparative evaluation of collocation extraction metrics. LREC(2): 620–625 Aletras N, Stevenson M (2013) Evaluating topic coherence using distributional semantics. In: Erk K, Koller A (eds) Proceedings of the 10th International Conference on Computational Semantics (IWCS 2013) – Long Papers: W13-0100, pp 13–22 Jonathan C, Sean G, Chong W et al. (2009) Reading tea leaves: how humans interpret topic models. Advances in neural information processing systems: 288–296 Selivanov D, Bickel M, Wang Q (2018) text2vec: modern text mining framework for R. Mimno D, Wallach HM, Talley E et al. (2011) Optimizing semantic coherence in topic models. EMNLP 2011 - Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference Röder M, Both A, Hinneburg A (2015) Exploring the space of topic coherence measures. In: Cheng X, Li H, Gabrilovich E et al. (eds) Proceedings of the Eighth ACM International Conference on Web Search and Data Mining - WSDM ‘15. ACM Press, New York, New York, USA, pp 399–408 Eells E, Fitelson B (2002) Symmetries and asymmetries in evidential support. Philosophical Studies 107(2):129–142. https://doi.org/10.1023/A:1014712013453 Jones T (2018) textmineR: functions for text mining and topic modeling Newman D, Karimi S, Cavedon L (2009) External evaluation of topic models. In: Kay J, Thomas P, Trotman A (eds) Proceedings of the Fourteenth Australasian Document Computing Symposium. School of Information Technologies, University of Sydney, Sydney Bouma G (2009) Normalized (pointwise) mutual information in collocation extraction. Proceedings of GSCL: 31–40 Douven I, Meijs W (2007) Measuring coherence. Synthese 156(3):405–425. https://doi.org/10.1007/s11229-006-9131-z Keyes O, Tilbert B (2017) WikipediR: A MediaWiki API Wrapper Hall D, Jurafsky D, Manning CD (2008) Studying the history of ideas using topic models. In: Lapata M, Ng HT (eds) Proceedings of the Conference on Empirical Methods in Natural Language Processing - EMNLP ‘08. Association for Computational Linguistics, Morristown, NJ, USA, p 363 Cleveland WS, Devlin SJ (1988) Locally weighted regression: an approach to regression analysis by local fitting. J Am Statist Assoc 83(403):596–610. https://doi.org/10.1080/01621459.1988.10478639 Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots. J Am Statist Assoc 74(368):829. https://doi.org/10.2307/2286407 Hurvich CM, Simonoff JS, Tsai C-L (1998) Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 60(2):271–293. https://doi.org/10.1111/1467-9868.00125 Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov BN, Cslki F (eds) In Proc. 2nd Int. Symp. Information Theory. Akadémiai Kiadó, Budapest, pp 267–281 Rao CR (1982) Diversity and dissimilarity coefficients: a unified approach. Theor Popul Biol 21(1):24–43. https://doi.org/10.1016/0040-5809(82)90004-1 Kullback S, Leibler RA (1951) On information and sufficiency. Ann Math Stat 22(1):79–86 Cailliez F (1983) The analytical solution of the additive constant problem. Psychometrika 48(2):305–308. https://doi.org/10.1007/BF02294026 Mardia KV (1978) Some properties of classical multi-dimesional scaling. Communications in Statistics - Theory and Methods 7(13):1233–1241. https://doi.org/10.1080/03610927808827707 Cox TF, Cox MAA (2001) Multidimensional scaling. Chapman & Hall/CRC, Boca Raton Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53(3-4):325–338. https://doi.org/10.1093/biomet/53.3-4.325 Sievert C, Shirley K (2014) LDAvis: a method for visualizing and interpreting topics. In: Association for Computational Linguistics (ed) Proceedings of the Workshop on Interactive Language Learning, Visualization, and Interfaces, pp 63–70 Sievert C, Shirley K (2015) LDAvis: interactive visualization of topic models Murtagh F, Legendre P (2014) Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J Classif 31(3):274–295. https://doi.org/10.1007/s00357-014-9161-z Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Statist Assoc 58(301):236–244. https://doi.org/10.1080/01621459.1963.10500845 Butts CT (2016) sna: tools for social network analysis: R package Freeman LC (1978) Centrality in social networks conceptual clarification. Social Networks 1(3):215–239. https://doi.org/10.1016/0378-8733(78)90021-7 Blondel VD, Guillaume J-L, Lambiotte R et al. (2008) Fast unfolding of communities in large networks. J Stat Mech 2008(10): P10008. doi: https://doi.org/10.1088/1742-5468/2008/10/P10008 Gabor Csardi, Tamas Nepusz (2006) The igraph software package for complex network research. InterJournal Complex Systems: 1695 Newman MEJ (2004) Analysis of weighted networks. Phys Rev E Stat Nonlin Soft Matter Phys 70(5 Pt 2):56131. https://doi.org/10.1103/PhysRevE.70.056131 Newman MEJ (2006) Modularity and community structure in networks. Proc Natl Acad Sci U.S.A. 103(23):8577–8582. https://doi.org/10.1073/pnas.0601602103 Girvan M, Newman MEJ (2002) Community structure in social and biological networks. Proc Natl Acad Sci U.S.A. 99(12):7821–7826. https://doi.org/10.1073/pnas.122653799 Blei DM, Lafferty JD (2006) Dynamic topic models. In: Cohen W, Moore A (eds) Proceedings of the 23rd international conference on Machine learning - ICML ‘06. ACM Press, New York, New York, USA, pp 113–120 Wallach HM, Mimno DM, McCallum A (2009) Rethinking LDA: why priors matter. In: Bengio Y, Schuurmans D, Lafferty JD et al. (eds) Advances in Neural Information Processing Systems 22. Curran Associates, Inc, pp 1973–1981 Schmidt BM (2012) Words alone: dismantling topic models in the humanities. J Digit Human 2(1):49–65 DiMaggio P, Nag M, Blei D (2013) Exploiting affinities between topic modeling and the sociological perspective on culture: application to newspaper coverage of U.S. government arts funding. Poetics 41(6):570–606. https://doi.org/10.1016/j.poetic.2013.08.004 Tang J, Meng Z, Nguyen X et al (2014) Understanding the limiting factors of topic modeling via posterior contraction analysis. Proceedings of the 31st International Conference on Machine Learning. PMLR 32(1):190–198 Valero A, Valero A, Calvo G et al (2018) Material bottlenecks in the future development of green technologies. Renewable Sustainable Energy Rev 93:178–200. https://doi.org/10.1016/j.rser.2018.05.041 de Koning A, Kleijn R, Huppes G et al (2018) Metal supply constraints for a low-carbon economy? Resour Conserv Recycling 129:202–208. https://doi.org/10.1016/j.resconrec.2017.10.040 Jacobson MZ, Delucchi MA (2009) A path to sustainable energy by 2030. Sci Am 301(5):58–65. https://doi.org/10.1038/scientificamerican1109-58 Nakicenovic N, Grübler A, Ishitani H et al. (1996) Energy primer. In: Watson RT, Zinyowera MC, Moss RH (eds) Climate change, 1995: Impacts, adaptations, and mitigation of climate change: scientific-technical analyses : contribution of working group II to the second assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (England), New York, NY, USA, pp 75–92 Rogner H (1994) Fuel cells, energy system evolution and electric utilities. Int J Hydrogen Energy 19(10):853–861. https://doi.org/10.1016/0360-3199(94)90201-1 Grubler A, Johansson TB, Mundaca L et al. (2012) Chapter 1 - Energy primer. In: Johansson TB, Patwardhan AP, Gomez-Echeverri L et al. (eds) Global Energy Assessment: Toward a Sustainable Future, Cambridge University Press, Cambridge, UK and New York, NY, USA and International Institute for Applied Systems Analysis, Laxenburg, Austria, pp 99–150 Tremmel J (2003) Nachhaltigkeit als politische und analytische Kategorie: Der deutsche Diskurs um nachhaltige Entwicklung im Spiegel der Interessen der Akteure. Teilw zugl.: Frankfurt/Main, Univ., Diplomarbeit, 2003. Hochschulschriften zur Nachhaltigkeit, vol 4. Ökom-Verl., München Heinrichs H, Wiek A, Martens P et al. (2016) Sustainability Science. In: Heinrichs H, Martens P, Michelsen G et al. (eds) Sustainability Science. Springer Netherlands, Dordrecht, pp 1–4 Ostrom E (2007) A diagnostic approach for going beyond panaceas. Proc Natl Acad Sci U.S.A. 104(39):15181–15187. https://doi.org/10.1073/pnas.0702288104 Mebratu D (1998) Sustainability and sustainable development. Environ Impact Assess Rev 18(6):493–520. https://doi.org/10.1016/S0195-9255(98)00019-5 Schultz J, Brand F, Kopfmüller J et al (2008) Building a ‘theory of sustainable development’: two salient conceptions within the German discourse. IJESD 7(4):465. https://doi.org/10.1504/IJESD.2008.022390 Scarlat N, Dallemand J-F, Monforti-Ferrario F et al (2015) The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environ Dev 15:3–34. https://doi.org/10.1016/j.envdev.2015.03.006 Dominković DF, Bačeković I, Pedersen AS et al (2018) The future of transportation in sustainable energy systems: opportunities and barriers in a clean energy transition. Renewable Sustainable Energy Rev 82:1823–1838. https://doi.org/10.1016/j.rser.2017.06.117 Hilty LM, Arnfalk P, Erdmann L et al (2006) The relevance of information and communication technologies for environmental sustainability – a prospective simulation study. Environ Model Software 21(11):1618–1629. https://doi.org/10.1016/j.envsoft.2006.05.007 Aiello M, Pagani GA (2016) How energy distribution will change: an ICT perspective. In: Beaulieu A, Wilde Jd, Scherpen JMA (eds) Smart grids from a global perspective: Bridging old and new energy systems. Springer, Cham, pp 11–25 Diamantoulakis PD, Kapinas VM, Karagiannidis GK (2015) Big data analytics for dynamic energy management in smart grids. Big Data Res 2(3):94–101. https://doi.org/10.1016/j.bdr.2015.03.003 Siano P (2014) Demand response and smart grids—a survey. Renewable and Sustainable Energy Reviews 30:461–478. https://doi.org/10.1016/j.rser.2013.10.022 BIO Intelligence Service (2008) Impacts of ICT on energy efficiency: report to European Commission DG INFSO Beier G, Niehoff S, Ziems T et al (2017) Sustainability aspects of a digitalized industry – a comparative study from China and Germany. Int J Precis Eng Manuf Green Tech 4(2):227–234. https://doi.org/10.1007/s40684-017-0028-8 Connolly D, Lund H, Mathiesen BV et al (2010) A review of computer tools for analysing the integration of renewable energy into various energy systems. Appl Energy 87(4):1059–1082. https://doi.org/10.1016/j.apenergy.2009.09.026 Sinha S, Chandel SS (2015) Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems. Renewable Sustainable Energy Rev 50:755–769. https://doi.org/10.1016/j.rser.2015.05.040 Mosavi A, Salimi M, Faizollahzadeh Ardabili S et al (2019) State of the art of machine learning models in energy systems, a systematic review. Energies 12(7):1301. https://doi.org/10.3390/en12071301 Gossart C (2015) Rebound effects and ICT: a review of the literature. In: Hilty LM, Aebischer B (eds) ICT Innovations for Sustainability, vol 310. Springer International Publishing, Cham, pp 435–448 Hilty LM (2008) Information technology and sustainability: essays on the relationship between ICT and sustainable development. Books on Demand, Norderstedt IEA (2016) Re-powering markets - market design and regulation during the transition to low-carbon power systems, International Energy Agency, Paris. https://webstore.iea.org/re-powering-markets Accessed 29 Jun 2018 Bryant ST, Straker K, Wrigley C (2019) The discourses of power – governmental approaches to business models in the renewable energy transition. Energy Policy 130:41–59. https://doi.org/10.1016/j.enpol.2019.03.050 Massari S, Ruberti M (2013) Rare earth elements as critical raw materials: focus on international markets and future strategies. Resources Policy 38(1):36–43. https://doi.org/10.1016/j.resourpol.2012.07.001 Zepf V, Reller A, Rennie C et al. (2014) Materials critical to the energy industry. An introduction., 2nd edition, London Bataille C, Åhman M, Neuhoff K et al (2018) A review of technology and policy deep decarbonization pathway options for making energy-intensive industry production consistent with the Paris Agreement. J Clean Prod 187:960–973. https://doi.org/10.1016/j.jclepro.2018.03.107 Worrell E, Bernstein L, Roy J et al (2009) Industrial energy efficiency and climate change mitigation. Energy Efficiency 2(2):109–123. https://doi.org/10.1007/s12053-008-9032-8 Flower DJM, Sanjayan JG (2007) Green house gas emissions due to concrete manufacture. Int J Life Cycle Assess 12(5):282–288. https://doi.org/10.1065/lca2007.05.327 Higgins D (2012) Briefing: specifying concrete for sustainability. Proceedings of the Institution of Civil Engineers - Engineering Sustainability 165(2): 125–127. doi: https://doi.org/10.1680/ensu.9.00059 Ehrenfeld J, Gertler N (1997) Industrial ecology in practice: the evolution of interdependence at Kalundborg. J Indust Ecol 1(1):67–79. https://doi.org/10.1162/jiec.1997.1.1.67 Lowe EA, Evans LK (1995) Industrial ecology and industrial ecosystems. J Clean Prod 3(1-2):47–53. https://doi.org/10.1016/0959-6526(95)00045-G Murray A, Skene K, Haynes K (2017) The circular economy: an interdisciplinary exploration of the concept and application in a global context. J Bus Ethics 140(3):369–380. https://doi.org/10.1007/s10551-015-2693-2 Ghisellini P, Cialani C, Ulgiati S (2016) A review on circular economy: the expected transition to a balanced interplay of environmental and economic systems. J Clean Prod 114:11–32. https://doi.org/10.1016/j.jclepro.2015.09.007 Ceschin F, Gaziulusoy I (2016) Evolution of design for sustainability: from product design to design for system innovations and transitions. Design Studies 47:118–163. https://doi.org/10.1016/j.destud.2016.09.002 Geels FW, Sovacool BK, Schwanen T et al (2017) The socio-technical dynamics of low-carbon transitions. Joule 1(3):463–479. https://doi.org/10.1016/j.joule.2017.09.018 Grin J, Rotmans J, Schot J et al. (2010) Transitions to sustainable development: new directions in the study of long term transformative change. Routledge studies in sustainability transitions, vol 1. Routledge, New York, NY Sovacool BK (2014) What are we doing here?: analyzing fifteen years of energy scholarship and proposing a social science research agenda. Energy Res Social Sci 1:1–29. https://doi.org/10.1016/j.erss.2014.02.003 Sovacool BK, Ryan SE, Stern PC et al (2015) Integrating social science in energy research. Energy Res Soc Sci 6:95–99. https://doi.org/10.1016/j.erss.2014.12.005 Büscher C, Sumpf P (2015) “Trust” and “confidence” as socio-technical problems in the transformation of energy systems. Energ Sustain Soc 5(1):20. https://doi.org/10.1186/s13705-015-0063-7 UN DESA (2014) World urbanization prospects: The 2014 revision. United Nations - Department of Economic and Social Affairs, New York UN DESA (2018) World Urbanization Prospects: The 2018 Revision. United Nations - Department of Economic and Social Affairs, New York Ott K, Döring R (2004) Theorie und Praxis starker Nachhaltigkeit. Ökologie und Wirtschaftsforschung, vol 54. Metropolis-Verlag, Marburg Daly HE (1990) Sustainable development: from concept and theory to operational principles. Popul Dev Rev 16:25–43. https://doi.org/10.2307/2808061