Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Cải thiện dự đoán rủi ro trong bệnh bạch cầu lympho cấp ở trẻ em thông qua phân tích metyl hóa DNA
Tóm tắt
Bạch cầu lympho cấp tính (ALL) là loại ung thư phổ biến nhất ở trẻ em, và mặc dù đã đạt được nhiều tiến bộ trong kết quả điều trị, tái phát vẫn là một mối nguy lớn đối với tỷ lệ tử vong và các biến chứng lâu dài. Để giải quyết thách thức này, chúng tôi đã sử dụng một kỹ thuật học máy có giám sát, cụ thể là rừng sống ngẫu nhiên, để dự đoán nguy cơ tái phát và tử vong dựa trên dữ liệu metyl hóa DNA từ một nhóm 763 bệnh nhân ALL trẻ em được điều trị tại các nước Bắc Âu. Dự đoán nguy cơ tái phát (RRP) được xây dựng dựa trên 16 vị trí CpG, cho thấy chỉ số c-index lần lượt là 0.667 và 0.677 trong các tập huấn luyện và kiểm tra. Dự đoán nguy cơ tử vong (MRP), bao gồm 53 vị trí CpG, thể hiện chỉ số c-index là 0.751 và 0.754 trong các tập huấn luyện và kiểm tra, tương ứng. Để xác thực giá trị dự đoán của các chỉ số, chúng tôi đã phân tích thêm hai nhóm độc lập của bệnh nhân ALL Canada (n = 42) và Bắc Âu (n = 384). Việc xác thực bên ngoài đã xác nhận những phát hiện của chúng tôi, với RRP đạt c-index 0.667 trong nhóm Canada, và RRP và MRP đạt chỉ số c-index lần lượt là 0.529 và 0.621 trong một nhóm Bắc Âu độc lập. Độ chính xác của các mô hình RRP và MRP đã được cải thiện khi kết hợp dữ liệu nhóm rủi ro truyền thống, nhấn mạnh tiềm năng tích hợp đồng bộ các yếu tố tiên đoán lâm sàng. Mô hình MRP cũng cho phép xác định một nhóm rủi ro có tỷ lệ tái phát và tử vong cao. Kết quả của chúng tôi cho thấy tiềm năng của metyl hóa DNA như một yếu tố dự đoán và một công cụ để tinh chỉnh phân tầng rủi ro trong bệnh ALL trẻ em. Điều này có thể dẫn đến các chiến lược điều trị cá nhân hóa dựa trên hồ sơ epigenetic.
Từ khóa
#Bạch cầu lympho cấp tính #metyl hóa DNA #dự đoán rủi ro #chiến lược điều trị cá nhân hóa #học máy có giám sát.Tài liệu tham khảo
Brady SW, Roberts KG, Gu Z, et al. The genomic landscape of pediatric acute lymphoblastic leukemia. Nat Genet. 2022;54(9):1376–89. https://doi.org/10.1038/s41588-022-01159-z.
Pui CH, Yang JJ, Hunger SP, Pieters R, et al. Childhood acute lymphoblastic leukemia: progress through collaboration. J Clin Oncol. 2015;33(27):2938–48. https://doi.org/10.1200/JCO.2014.59.1636.
Oskarsson T, Soderhall S, Arvidson J, et al. Relapsed childhood acute lymphoblastic leukemia in the Nordic countries: prognostic factors, treatment and outcome. Haematologica. 2016;101(1):68–76.
Bhakta N, Liu Q, Ness KK, et al. The cumulative burden of surviving childhood cancer: an initial report from the St. Jude lifetime cohort study (SJLIFE). Lancet. 2017;390(10112):2569–82. https://doi.org/10.1016/S0140-6736(17)31610-0.
Diesch-Furlanetto T, Gabriel M, Zajac-Spychala O, Cattoni A, Hoeben BAW, Balduzzi A. Late effects after haematopoietic stem cell transplantation in ALL, long-term follow-up and transition: a step into adult life. Front Pediatr. 2021;24(9):773895. https://doi.org/10.3389/fped.2021.773895.
Schmiegelow K, Forestier E, Hellebostad M, et al. Long-term results of NOPHO ALL-92 and ALL-2000 studies of childhood acute lymphoblastic leukemia. Leukemia. 2010;24(2):345–54. https://doi.org/10.1038/leu.2009.251.
Inaba H, Mullighan CG. Pediatric acute lymphoblastic leukemia. Haematologica. 2020;105(11):2524–39. https://doi.org/10.3324/haematol.2020.247031.
Terwilliger T, Abdul-Hay M. Acute lymphoblastic leukemia: a comprehensive review and 2017 update. Blood Cancer J. 2017;7(6):e577. https://doi.org/10.1038/bcj.2017.53.
Pieters R, de Groot-Kruseman H, Van der Velden V, et al. Successful therapy reduction and intensification for childhood acute lymphoblastic leukemia based on minimal residual disease monitoring: study ALL10 from the dutch childhood oncology group. J Clin Oncol. 2016;34(22):2591–601. https://doi.org/10.1200/JCO.2015.64.6364.
Maloney KW, Devidas M, Wang C, et al. Outcome in children with standard-risk B-cell acute lymphoblastic leukemia: results of children’s oncology group trial AALL0331. J Clin Oncol. 2020;38(6):602–12. https://doi.org/10.1200/JCO.19.01086.
Steinherz PG, Seibel NL, Sather H, et al. Treatment of higher risk acute lymphoblastic leukemia in young people (CCG-1961), long-term follow-up: a report from the children’s oncology group. Leukemia. 2019;33(9):2144–54. https://doi.org/10.1038/s41375-019-0422-z.
Toft N, Birgens H, Abrahamsson J, et al. Results of NOPHO ALL2008 treatment for patients aged 1–45 years with acute lymphoblastic leukemia. Leukemia. 2018;32(3):606–15. https://doi.org/10.1038/leu.2017.265.
Vora A, Goulden N, Wade R, et al. Treatment reduction for children and young adults with low-risk acute lymphoblastic leukemia defined by minimal residual disease (UKALL 2003): a randomized controlled trial. Lancet Oncol. 2013;14(3):199–209. https://doi.org/10.1016/S1470-2045(12)70600-9.
Mondelaers V, Suciu S, De Moerloose B, et al. Prolonged versus standard native E coli. asparaginase therapy in childhood acute lymphoblastic leukemia and non-Hodgkin lymphoma: final results of the EORTC-CLG randomized phase III trial 58951. Haematologica. 2017;102(10):1727–38. https://doi.org/10.3324/haematol.2017.165845.
Schramm F, Zimmermann M, Jorch N, et al. Daunorubicin during delayed intensification decreases the incidence of infectious complications - a randomized comparison in trial CoALL 08–09. Leuk Lymphoma. 2019;60(1):60–8. https://doi.org/10.1080/10428194.2018.1473575.
Hallböök H, Gustafsson G, Smedmyr B, et al. Treatment outcome in young adults and children >10 years of age with acute lymphoblastic leukemia in Sweden: a comparison between a pediatric protocol and an adult protocol. Cancer. 2006;107(7):1551–61. https://doi.org/10.1002/cncr.22189.
Stanulla M, Cavé H, Moorman AV. IKZF1 deletions in pediatric acute lymphoblastic leukemia: still a poor prognostic marker? Blood. 2020;135(4):252–60. https://doi.org/10.1182/blood.2019000813.
Olsson L, Ivanov Öfverholm I, Norén-Nyström U, et al. The clinical impact of IKZF1 deletions in pediatric B-cell precursor acute lymphoblastic leukemia is independent of minimal residual disease stratification in Nordic society for pediatric hematology and oncology treatment protocols used between 1992 and 2013. Br J Haematol. 2015;170(6):847–58. https://doi.org/10.1111/bjh.13514.
Eapen M, Raetz E, Zhang MJ, et al. Outcomes after HLA-matched sibling transplantation or chemotherapy in children with B-precursor acute lymphoblastic leukemia in a second remission: a collaborative study of the children’s oncology group and the Center for international blood and marrow transplant research. Blood. 2006;107(12):4961–7.
Schroeder H, Gustafsson G, Saarinen-Pihkala UM, et al. Allogeneic bone marrow transplantation in second remission of childhood acute lymphoblastic leukemia: a population-based case control study from the Nordic countries. Bone Marrow Transplant. 1999;23(6):555–60.
Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18.
Wong M, Mayoh C, Lau LMS, et al. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat Med. 2020;26(11):1742–53. https://doi.org/10.1038/s41591-020-1072-4.
Villani A, Davidson S, Kanwar N, et al. The clinical utility of integrative genomics in childhood cancer extends beyond targetable mutations. Nat Cancer. 2023;4(2):203–21. https://doi.org/10.1038/s43018-022-00474-y.
Alvarnas JC, Brown PA, Aoun P, et al. Acute lymphoblastic leukemia. J Natl Compr Canc Netw. 2015;13(10):1240–79. https://doi.org/10.6004/jnccn.2015.0153.
Bataller A, Garrido A, Guijarro F, et al. European LeukemiaNet 2017 risk stratification for acute myeloid leukemia: validation in a risk-adapted protocol. Blood Adv. 2022;6(4):1193–206. https://doi.org/10.1182/bloodadvances.2021005585.
Young TA, Thompson S. The importance of accounting for the uncertainty of published prognostic model estimates. Int J Technol Assess Health Care. 2004;20(4):481–7. https://doi.org/10.1017/s0266462304001394.
Nordlund J, Bäcklin CL, Zachariadis V, et al. DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia. Clin Epigenetics. 2015;7(1):11. https://doi.org/10.1186/s13148-014-0039-z.
Tran TH, Langlois S, Meloche C, et al. Whole-transcriptome analysis in acute lymphoblastic leukemia: a report from the DFCI ALL Consortium Protocol 16–001. Blood Adv. 2022;6(4):1329–41. https://doi.org/10.1182/bloodadvances.2021005634.
Löschmann L, Smorodina D. Deep learning for survival analysis. Retrieved 2020;5, 2023, from https://towardsdatascience.com/survival-analysis-predict-time-to-event-with-machine-learning-part-i-ba52f9ab9a46
Mosquera-Orgueira A, Pérez-Encinas M, Hernández-Sánchez A, et al. Machine learning improves risk stratification in myelofibrosis: an analysis of the Spanish registry of myelofibrosis. Hemasphere. 2022;7(1):e818. https://doi.org/10.1097/HS9.0000000000000818.
Mosquera Orgueira A, Perez Encinas M, Diaz Varela NA, et al. Supervised machine learning improves risk stratification in newly diagnosed myelodysplastic syndromes: an analysis of the Spanish group of myelodysplastic syndromes. Blood. 2022;140(Supplement 1):1132–4. https://doi.org/10.1182/blood-2022-159429.
Mosquera Orgueira A, González Pérez MS, Díaz Arias JÁ, et al. Survival prediction and treatment optimization of multiple myeloma patients using machine-learning models based on clinical and gene expression data. Leukemia. 2021;35(10):2924–35. https://doi.org/10.1038/s41375-021-01286-2.
Feinberg AP, Koldobskiy MA, Göndör A. Epigenetic modulators, modifiers and mediators in cancer etiology and progression. Nat Rev Genet. 2016;17(5):284–99. https://doi.org/10.1038/nrg.2016.13.
Oakes CC, Martin-Subero JI. Insight into origins, mechanisms, and utility of DNA methylation in B-cell malignancies. Blood. 2018;132(10):999–1006. https://doi.org/10.1182/blood-2018-02-692970.
Duran-Ferrer M, Clot G, Nadeu F, et al. The proliferative history shapes the DNA methylome of B-cell tumors and predicts clinical outcome. Nat Cancer. 2020;1(11):1066–81. https://doi.org/10.1038/s43018-020-00131-2.
Borssén M, Palmqvist L, Karrman K, et al. Promoter DNA methylation pattern identifies prognostic subgroups in childhood T-cell acute lymphoblastic leukemia. PLoS ONE. 2013;8(6):e65373. https://doi.org/10.1371/journal.pone.0065373.
Hetzel S, Mattei AL, Kretzmer H, et al. Acute lymphoblastic leukemia displays a distinct highly methylated genome. Nat Cancer. 2022;3(6):768–82. https://doi.org/10.1038/s43018-022-00370-5.
Nordlund J, Syvanen AC. Epigenetics in pediatric acute lymphoblastic Leukemia. Semin Cancer Biol. 2017;51:129.
Busche S, Ge B, Vidal R, et al. Integration of high-resolution methylome and transcriptome analyzes to dissect epigenomic changes in childhood acute lymphoblastic leukemia. Cancer Res. 2013;73(14):4323–36. https://doi.org/10.1158/0008-5472.CAN-12-4367.
Krali O, Marincevic-Zuniga Y, Arvidsson G, Enblad AP, Lundmark A, Sayyab S, et al. Multimodal classification of molecular subtypes in pediatric acute lymphoblastic leukemia. Npj Precis Oncol. 2023;7(1):131.
Moghrabi A, Levy DE, Asselin B, et al. Results of the dana-farber cancer institute ALL consortium protocol 95–01 for children with acute lymphoblastic leukemia. Blood. 2007;109(3):896–904. https://doi.org/10.1182/blood-2006-06-027714.
Vrooman LM, Stevenson KE, Supko JG, et al. Postinduction dexamethasone and individualized dosing of Escherichia Coli L-asparaginase each improve outcome of children and adolescents with newly diagnosed acute lymphoblastic leukemia: results from a randomized study–dana-farber cancer institute ALL consortium protocol 00–01. J Clin Oncol. 2013;31(9):1202–10. https://doi.org/10.1200/JCO.2012.43.2070.
Silverman LB, Stevenson KE, Athale UH, et al. Results of the DFCI ALL consortium protocol 05–001 for children and adolescents with newly diagnosed ALL. Blood. 2013;122(21):838. https://doi.org/10.1182/blood.V122.21.838.838.
Ishwaran H, Kogalur U, Blackstone E, Lauer M. Random survival forests. Ann Appl Statist. 2008;2(3):841–60.
Gerds TA, Kattan MW. Medical risk prediction models: with ties to machine learning (1st ed.). Chapman and Hall/CRC, 2021. https://doi.org/10.1201/9781138384484.
Kassambara A, Kosinski M, Biecek P. survminer: Drawing Survival Curves using “ggplot2” [Internet]. 2021. Available from: https://CRAN.R-project.org/package=survminer.
Arber DA, Orazi A, Hasserjian RP, et al. International consensus classification of myeloid neoplasms and acute Leukemias: integrating morphologic, clinical, and genomic data. Blood. 2022;140(11):1200–28. https://doi.org/10.1182/blood.2022015850.
Zaliova M, Stuchly J, Winkowska L, et al. Genomic landscape of pediatric B-other acute lymphoblastic leukemia in a consecutive European cohort. Haematologica. 2019;104(7):1396–406. https://doi.org/10.3324/haematol.2018.204974.
Ryan SL, Peden JF, Kingsbury Z, et al. Whole genome sequencing provides comprehensive genetic testing in childhood B-cell acute lymphoblastic leukemia. Leukemia. 2023;37(3):518–28. https://doi.org/10.1038/s41375-022-01806-8.
Gu Z, Churchman ML, Roberts KG, et al. PAX5-driven subtypes of B-progenitor acute lymphoblastic leukemia. Nat Genet. 2019;51(2):296–307. https://doi.org/10.1038/s41588-018-0315-5.
Jeha S, Choi J, Roberts KG, et al. Clinical significance of novel subtypes of acute lymphoblastic leukemia in the context of minimal residual disease-directed therapy. Blood Cancer Discov. 2021;2(4):326–37. https://doi.org/10.1158/2643-3230.BCD-20-0229.
Enshaei A, O’Connor D, Bartram J, et al. A validated novel continuous prognostic index to deliver stratified medicine in pediatric acute lymphoblastic leukemia. Blood. 2020;135(17):1438–46. https://doi.org/10.1182/blood.2019003191.Erratum.In:Blood.2020Sep17;136(12):1468.
Ma X, Edmonson M, Yergeau D, et al. Rise and fall of subclones from diagnosis to relapse in pediatric B-acute lymphoblastic leukemia. Nat Commun. 2015;19(6):6604. https://doi.org/10.1038/ncomms7604.
Haider Z, Larsson P, Landfors M, et al. An integrated transcriptome analysis in T-cell acute lymphoblastic leukemia links DNA methylation subgroups to dysregulated TAL1 and ANTP homeobox gene expression. Cancer Med. 2019;8(1):311–24. https://doi.org/10.1002/cam4.1917.
Schwab C, Cranston RE, Ryan SL, et al. Integrative genomic analysis of childhood acute lymphoblastic leukemia lacking a genetic biomarker in the UKALL2003 clinical trial. Leukemia. 2023;37(3):529–38. https://doi.org/10.1038/s41375-022-01799-4.
Wagner W. How to translate DNA methylation biomarkers into clinical practice. Front Cell Dev Biol. 2022;23(10):854797. https://doi.org/10.3389/fcell.2022.854797.