Reduction of the thermal conductivity in free-standing silicon nano-membranes investigated by non-invasive Raman thermometry

APL Materials - Tập 2 Số 1 - 2014
Emigdio Chávez‐Ángel1,2, J. S. Reparaz1, Jordi Gomis‐Brescó1, Markus R. Wagner1, J. Cuffe3, Bartłomiej Graczykowski1, A. Shchepetov4, Haochuan Jiang5, Mika Prunnila4, Jouni Ahopelto4, F. Alzina1, C. M. Sotomayor Torres1,6
1ICN2–Institut Catala de Nanociencia i Nanotecnologia 1 , Campus UAB, 08193 Bellaterra (Barcelona), Spain
2UAB 2 Department of Physics, , 08193 Bellaterra, Barcelona, Spain
3Massachusetts Institute of Technology 3 Department of Mechanical Engineering, , Cambridge, Massachusetts 02139, USA
4VTT Technical Research Centre of Finland 4 , PO Box 1000, 02044 VTT, Espoo, Finland
5Aalto University School of Science 5 NanoMaterials Group, Department of Applied Physics and Center for New Materials, , P.O. Box 15100, FI-00076 Aalto, Finland
6Institució Catalana de Recerca i Estudis Avançats (ICREA) 6 , 08010 Barcelona, Spain

Tóm tắt

We report on the reduction of the thermal conductivity in ultra-thin suspended Si membranes with high crystalline quality. A series of membranes with thicknesses ranging from 9 nm to 1.5 μm was investigated using Raman thermometry, a novel contactless technique for thermal conductivity determination. A systematic decrease in the thermal conductivity was observed as reducing the thickness, which is explained using the Fuchs-Sondheimer model through the influence of phonon boundary scattering at the surfaces. The thermal conductivity of the thinnest membrane with d = 9 nm resulted in (9 ± 2) W/mK, thus approaching the amorphous limit but still maintaining a high crystalline quality.

Từ khóa


Tài liệu tham khảo

2011, Phys. Rev. B, 84, 085204, 10.1103/PhysRevB.84.085204

2013, Nat. Commun., 4, 1640, 10.1038/ncomms2630

2010, Adv. Funct. Mater., 20, 357, 10.1002/adfm.200901512

2009, Energy Environ. Sci., 2, 466, 10.1039/b822664b

1964, Phys. Rev., 134, A1058, 10.1103/PhysRev.134.A1058

2013, Phys. Rev. Lett., 110, 025902, 10.1103/PhysRevLett.110.025902

2012, J. Appl. Phys., 111, 073508, 10.1063/1.3699056

2011, AIP Adv., 1, 041403, 10.1063/1.3675918

2010, Appl. Phys. A, 103, 575, 10.1007/s00339-010-6189-8

2010, Nat. Nanotechnol., 5, 718, 10.1038/nnano.2010.149

2013, Appl. Phys. Lett., 102, 192108, 10.1063/1.4807130

1998, Phys. Rev. B, 58, 1544, 10.1103/PhysRevB.58.1544

2007, Int. J. Heat Mass Transfer, 50, 67, 10.1016/j.ijheatmasstransfer.2006.06.044

2008, J. Appl. Phys., 104, 054314, 10.1063/1.2976314

2011, J. Appl. Phys., 110, 046102, 10.1063/1.3622317

2004, Appl. Phys. Lett., 84, 3819, 10.1063/1.1741039

2009, Phys. Rev. Lett., 102, 125503, 10.1103/PhysRevLett.102.125503

Wilkes, 1996, Thermal Conductivity, 172

2010, Nano Lett., 10, 4279, 10.1021/nl102931z

1996, Jpn. J. Appl. Phys., 35, L648, 10.1143/JJAP.35.L648

2003, Appl. Phys. Lett., 83, 2934, 10.1063/1.1616981

2012, Nano Lett., 12, 2475, 10.1021/nl3005868

2011, Phys. Rev. B, 84, 165415, 10.1103/PhysRevB.84.165415

2012, Phys. Rev. B, 85, 205439, 10.1103/PhysRevB.85.205439

2013, Appl. Phys. Lett., 102, 213109, 10.1063/1.4807389

1997, Appl. Phys. Lett., 71, 1798, 10.1063/1.119402

1998, J. Heat Transfer, 120, 30, 10.1115/1.2830059

1999, Appl. Phys. Lett., 74, 3005, 10.1063/1.123994

2005, J. Appl. Phys., 98, 123523, 10.1063/1.2149497

2011, Appl. Phys. Lett., 98, 174104, 10.1063/1.3583603

2011, Nature Mater., 10, 569, 10.1038/nmat3064

2002, Proceedings of the ITherm 2002. Eighth Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems Cat. No.02CH37258, 142

2002, Microelectron. J., 33, 697, 10.1016/S0026-2692(02)00052-6

2009, Rev. Sci. Instrum., 80, 094901, 10.1063/1.3212673

1995, Rev. Sci. Instrum., 66, 3903, 10.1063/1.1145391

2013, Phys. Rev. Lett., 110, 025901, 10.1103/PhysRevLett.110.025901

2013, Phys. Rev. Lett., 110, 095503, 10.1103/PhysRevLett.110.095503

2012, Nano Lett., 12, 3569, 10.1021/nl301204u

Madelung, 2001, Group IV Elements, IV-IV and III-V Compounds. Part a – Lattice Properties, 10.1007/b60136

2012, Nanotechnology, 23, 365701, 10.1088/0957-4484/23/36/365701

2011, Phys. Rev. B, 83, 081419, 10.1103/PhysRevB.83.081419

2011, ACS Nano, 5, 321, 10.1021/nn102915x

2007, Proceedings of the 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO), 859

2012, Nature Mater., 11, 203, 10.1038/nmat3207

2008, Nano Lett., 8, 902, 10.1021/nl0731872

1998, J. Appl. Phys., 84, 6291, 10.1063/1.368951

See supplementary material at http://dx.doi.org/10.1063/1.4861796 for a detailed description of the calculations. The thickness dependence of the thermal conductivity is described through the Fuchs-Sondheimer model.