Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Giảm biểu hiện enzyme chống oxy hóa và viêm kéo dài làm tăng tổn thương mô ở giai đoạn bán cấp của chấn thương tủy sống do va chạm
Tóm tắt
Chấn thương tủy sống (SCI) tạo ra một môi trường vi mô bất lợi cho việc phục hồi mô tại vị trí tổn thương. Để xác định một khoảng thời gian thích hợp cho việc điều trị liệu pháp hứa hẹn đối với SCI bán cấp và mãn tính, những thay đổi toàn cầu của protein trong trung tâm bị tổn thương ở các thời điểm sống sót lâu hơn sau SCI vẫn cần được làm sáng tỏ. Thông qua phân tích proteome dựa trên điện di hai chiều (2DE) và sắc ký miễn dịch western blot, chúng tôi đã kiểm tra sự biểu hiện khác biệt của các protein hòa tan được tách ra từ trung tâm tổn thương (LC) vào ngày 1 (cấp tính) và ngày 14 (bán cấp) sau khi trải qua chấn thương va chạm nghiêm trọng đối với tủy sống ngực ở đoạn 10. Phân tích apoptosis tại chỗ được sử dụng để kiểm tra sự chết tế bào trong tủy sống bị tổn thương sau khi chuyển giao gene enzyme chống oxy hóa bằng adenovirus. Ngoài ra, việc sử dụng chondroitinase ABC (chABC) đã được thực hiện để phân tích sự phục hồi vận động chân sau ở chuột bị SCI bằng thang điểm vận động Basso, Beattie và Bresnahan (BBB). Kết quả của chúng tôi cho thấy sự giảm thiểu trong catalase (CAT) và Mn-superoxide dismutase (MnSOD) được phát hiện vào ngày 14 sau SCI. Do đó, việc chuyển giao gene SOD được đưa vào tủy sống bị tổn thương và cho thấy làm giảm apoptosis tế bào. Galectin-3, β-actin, protein điều chỉnh actin (CAPG), và tiểu đơn vị protein capping F-actin β (CAPZB) vào ngày 14 đã tăng lên khi so với mức phát hiện vào ngày 1 sau SCI hoặc trong nhóm chứng phẫu thuật giả. Thực tế, sự tích tụ của các tế bào miễn dịch β-actin+ đã được quan sát thấy trong LC vào ngày 14 sau SCI, trong khi hầu hết các nguyên bào đệm phản ứng bao quanh trung tâm tổn thương. Bên cạnh đó, các protein liên quan đến proteoglycan sulfate chondroitin (CSPG) với kích thước 40-kDa đã được phát hiện trong LC vào ngày 3-14 sau SCI. Việc điều trị muộn bằng chondroitinase ABC (chABC) vào ngày 3 sau SCI đã cải thiện vận động chân sau ở chuột SCI. Các phát hiện của chúng tôi chứng minh rằng sự biểu hiện khác biệt trong các protein liên quan đến truyền tín hiệu, oxy hóa khử và căng thẳng góp phần vào tình trạng viêm rộng rãi, gây ra sự lan rộng tổn thương mô theo thời gian sau SCI nghiêm trọng. Các can thiệp bằng cách bổ sung enzyme chống oxy hóa ngay sau SCI hoặc việc sử dụng chậm chondroitinase ABC có thể hỗ trợ sự sống còn của tế bào thần kinh tủy sống và phục hồi mô.
Từ khóa
#chấn thương tủy sống #enzyme chống oxy hóa #apoptosis #protein #viêmTài liệu tham khảo
Rolls A, Shechter R, Schwartz M: The bright side of the glial scar in CNS repair. Nat Rev Neurosci. 2009, 10: 235-241. 10.1038/nrn2591.
Bareyre FM, Schwab ME: Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends Neurosci. 2003, 26: 555-563. 10.1016/j.tins.2003.08.004.
Tator CH, Fehlings MG: Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. 1991, 75: 15-26. 10.3171/jns.1991.75.1.0015.
Horky LL, Galimi F, Gage FH, Horner PJ: Fate of endogenous stem/progenitor cells following spinal cord injury. J Comp Neurol. 2006, 498: 525-538. 10.1002/cne.21065.
Bethea JR, Dietrich WD: Targeting the host inflammatory response in traumatic spinal cord injury. Curr Opin Neurol. 2002, 15: 355-360. 10.1097/00019052-200206000-00021.
Bruce JH, Norenberg MD, Kraydieh S, Puckett W, Marcillo A, Dietrich D: Schwannosis: role of gliosis and proteoglycan in human spinal cord injury. J Neurotrauma. 2000, 17: 781-788. 10.1089/neu.2000.17.781.
Jones DG, Anderson ER, Galvin KA: Spinal cord regeneration: moving tentatively towards new perspectives. NeuroRehabilitation. 2003, 18: 339-351.
Roitbak T, Sykova E: Diffusion barriers evoked in the rat cortex by reactive astrogliosis. Glia. 1999, 28: 40-48. 10.1002/(SICI)1098-1136(199910)28:1<40::AID-GLIA5>3.0.CO;2-6.
Silver J, Miller JH: Regeneration beyond the glial scar. Nat Rev Neurosci. 2004, 5: 146-156. 10.1038/nrn1326.
Fawcett JW: Overcoming inhibition in the damaged spinal cord. J Neurotrauma. 2006, 23: 371-383. 10.1089/neu.2006.23.371.
Nesic O, Svrakic NM, Xu GY, McAdoo D, Westlund KN, Hulsebosch CE, Ye Z, Galante A, Soteropoulos P, Tolias P: DNA microarray analysis of the contused spinal cord: effect of NMDA receptor inhibition. J Neurosci Res. 2002, 68: 406-423. 10.1002/jnr.10171.
Liu CL, Jin AM, Tong BH: Detection of gene expression pattern in the early stage after spinal cord injury by gene chip. Chin J Traumatol. 2003, 6: 18-22.
Bareyre FM, Haudenschild B, Schwab ME: Long-lasting sprouting and gene expression changes induced by the monoclonal antibody IN-1 in the adult spinal cord. J Neurosci. 2002, 22: 7097-7110.
Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI: Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol. 2003, 53: 454-468. 10.1002/ana.10472.
Kang SK, So HH, Moon YS, Kim CH: Proteomic analysis of injured spinal cord tissue proteins using 2-DE and MALDI-TOF MS. Proteomics. 2006, 6: 2797-2812. 10.1002/pmic.200500621.
Yan X, Liu J, Luo Z, Ding Q, Mao X, Yan M, Yang S, Hu X, Huang J, Luo Z: Proteomic profiling of proteins in rat spinal cord induced by contusion injury. Neurochem Int. 2010, 56: 971-983. 10.1016/j.neuint.2010.04.007.
Houle JD, Tessler A: Repair of chronic spinal cord injury. Exp Neurol. 2003, 182: 247-260. 10.1016/S0014-4886(03)00029-3.
Gruner JA: A monitored contusion model of spinal cord injury in the rat. J Neurotrauma. 1992, 9: 123-126. 10.1089/neu.1992.9.123. discussion 126-128
Basso DM, Beattie MS, Bresnahan JC: A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995, 12: 1-21. 10.1089/neu.1995.12.1.
Basso DM, Beattie MS, Bresnahan JC, Anderson DK, Faden AI, Gruner JA, Holford TR, Hsu CY, Noble LJ, Nockels R: MASCIS evaluation of open field locomotor scores: effects of experience and teamwork on reliability. Multicenter Animal Spinal Cord Injury Study. J Neurotrauma. 1996, 13: 343-359. 10.1089/neu.1996.13.343.
Tsai MC, Shen LF, Kuo HS, Cheng H, Chak KF: Involvement of acidic fibroblast growth factor in spinal cord injury repair processes revealed by a proteomics approach. Mol Cell Proteomics. 2008, 7: 1668-1687. 10.1074/mcp.M800076-MCP200.
Yang CS, Tzou BC, Liu YP, Tsai MJ, Shyue SK, Tzeng SF: Inhibition of cadmium-induced oxidative injury in rat primary astrocytes by the addition of antioxidants and the reduction of intracellular calcium. J Cell Biochem. 2008, 103: 825-834. 10.1002/jcb.21452.
Tai MH, Cheng H, Wu JP, Liu YL, Lin PR, Kuo JS, Tseng CJ, Tzeng SF: Gene transfer of glial cell line-derived neurotrophic factor promotes functional recovery following spinal cord contusion. Exp Neurol. 2003, 183: 508-515. 10.1016/S0014-4886(03)00130-4.
Cheng H, Wu JP, Tzeng SF: Neuroprotection of glial cell line-derived neurotrophic factor in damaged spinal cords following contusive injury. J Neurosci Res. 2002, 69: 397-405. 10.1002/jnr.10303.
Hoving S, Voshol H, van Oostrum J: Towards high performance two-dimensional gel electrophoresis using ultrazoom gels. Electrophoresis. 2000, 21: 2617-2621. 10.1002/1522-2683(20000701)21:13<2617::AID-ELPS2617>3.0.CO;2-C.
Hoving S, Gerrits B, Voshol H, Muller D, Roberts RC, van Oostrum J: Preparative two-dimensional gel electrophoresis at alkaline pH using narrow range immobilized pH gradients. Proteomics. 2002, 2: 127-134. 10.1002/1615-9861(200202)2:2<127::AID-PROT127>3.0.CO;2-Y.
Zykova TA, Zhu F, Vakorina TI, Zhang J, Higgins LA, Urusova DV, Bode AM, Dong Z: T-LAK cell-originated protein kinase (TOPK) phosphorylation of Prx1 at Ser-32 prevents UVB-induced apoptosis in RPMI7951 melanoma cells through the regulation of Prx1 peroxidase activity. J Biol Chem. 2010, 285: 29138-29146. 10.1074/jbc.M110.135905.
Xu S, Ying J, Jiang B, Guo W, Adachi T, Sharov V, Lazar H, Menzoian J, Knyushko TV, Bigelow D: Detection of sequence-specific tyrosine nitration of manganese SOD and SERCA in cardiovascular disease and aging. Am J Physiol Heart Circ Physiol. 2006, 290: H2220-2227. 10.1152/ajpheart.01293.2005.
Neumann CA, Cao J, Manevich Y: Peroxiredoxin 1 and its role in cell signaling. Cell Cycle. 2009, 8: 4072-4078. 10.4161/cc.8.24.10242.
Guo W, Adachi T, Matsui R, Xu S, Jiang B, Zou MH, Kirber M, Lieberthal W, Cohen RA: Quantitative assessment of tyrosine nitration of manganese superoxide dismutase in angiotensin II-infused rat kidney. Am J Physiol Heart Circ Physiol. 2003, 285: H1396-1403.
Trudel S, Kelly M, Fritsch J, Nguyen-Khoa T, Therond P, Couturier M, Dadlez M, Debski J, Touqui L, Vallee B: Peroxiredoxin 6 fails to limit phospholipid peroxidation in lung from Cftr-knockout mice subjected to oxidative challenge. PLoS One. 2009, 4: e6075-10.1371/journal.pone.0006075.
Tachibana T, Noguchi K, Ruda MA: Analysis of gene expression following spinal cord injury in rat using complementary DNA microarray. Neurosci Lett. 2002, 327: 133-137. 10.1016/S0304-3940(02)00375-0.
Byrnes KR, Garay J, Di Giovanni S, De Biase A, Knoblach SM, Hoffman EP, Movsesyan V, Faden AI: Expression of two temporally distinct microglia-related gene clusters after spinal cord injury. Glia. 2006, 53: 420-433. 10.1002/glia.20295.
Rotshenker S: The role of Galectin-3/MAC-2 in the activation of the innate-immune function of phagocytosis in microglia in injury and disease. J Mol Neurosci. 2009, 39: 99-103. 10.1007/s12031-009-9186-7.
Maria E, Figueiredo-Pereira PR: The Ubiquitin/Proteasome Pathway in Neurological Disorders. 2007, New York, Boston, Dordrecht, London, Moscow: Kluwer Academic Publishers
Vito Turk JK, Guncar Gregor, Turk Boris: Lysosomal Cysteine Proteases and Their Protein Inhibitor. 2007, New York, Boston, Dordrecht, London, Moscow: Kluwer Academic Publishers
Wootz H, Weber E, Korhonen L, Lindholm D: Altered distribution and levels of cathepsinD and cystatins in amyotrophic lateral sclerosis transgenic mice: possible roles in motor neuron survival. Neuroscience. 2006, 143: 419-430. 10.1016/j.neuroscience.2006.07.048.
Kim H, Ahn M, Moon C, Matsumoto Y, Sung Koh C, Shin T: Immunohistochemical study of flotillin-1 in the spinal cord of Lewis rats with experimental autoimmune encephalomyelitis. Brain Res. 2006, 1114: 204-211. 10.1016/j.brainres.2006.07.054.
Moon C, Lee TK, Kim H, Ahn M, Lee Y, Kim MD, Sim KB, Shin T: Immunohistochemical study of cathepsin D in the spinal cords of rats with clip compression injury. J Vet Med Sci. 2008, 70: 937-941. 10.1292/jvms.70.937.
Jones LL, Margolis RU, Tuszynski MH: The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Exp Neurol. 2003, 182: 399-411. 10.1016/S0014-4886(03)00087-6.
Iaci JF, Vecchione AM, Zimber MP, Caggiano AO: Chondroitin sulfate proteoglycans in spinal cord contusion injury and the effects of chondroitinase treatment. J Neurotrauma. 2007, 24: 1743-1759. 10.1089/neu.2007.0366.
Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB: Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002, 416: 636-640. 10.1038/416636a.
Olson L: Medicine: clearing a path for nerve growth. Nature. 2002, 416: 589-590. 10.1038/416589a.
Mingorance A, Sole M, Muneton V, Martinez A, Nieto-Sampedro M, Soriano E, del Rio JA: Regeneration of lesioned entorhino-hippocampal axons in vitro by combined degradation of inhibitory proteoglycans and blockade of Nogo-66/NgR signaling. Faseb J. 2006, 20: 491-493.
Garcia-Alias G, Lin R, Akrimi SF, Story D, Bradbury EJ, Fawcett JW: Therapeutic time window for the application of chondroitinase ABC after spinal cord injury. Exp Neurol. 2008, 210: 331-338. 10.1016/j.expneurol.2007.11.002.