Reduced graphene oxide wrapped Cu2O supported on C3N4: An efficient visible light responsive semiconductor photocatalyst

APL Materials - Tập 3 Số 10 - 2015
Sundaram Ganesh Babu1, R. Vinoth1, P. Surya Narayana1, Detlef W. Bahnemann2, Bernaurdshaw Neppolian1
1SRM University 1 SRM Research Institute, , Kattankulathur, Chennai 603203, India
2Leibniz University of Hannover 2 Institute of Technical Chemistry, , D-30167 Hannover, Germany

Tóm tắt

Herein, Cu2O spheres were prepared and encapsulated with reduced graphene oxide (rGO). The Cu2O–rGO–C3N4 composite covered the whole solar spectrum with significant absorption intensity. rGO wrapped Cu2O loading caused a red shift in the absorption with respect to considering the absorption of bare C3N4. The photoluminescence study confirms that rGO exploited as an electron transport layer at the interface of Cu2O and C3N4 heterojunction. Utmost, ∼2 fold synergistic effect was achieved with Cu2O–rGO–C3N4 for the photocatalytic reduction of 4-nitrophenol to 4-aminophenol in comparison with Cu2O–rGO and C3N4. The Cu2O–rGO–C3N4 photocatalyst was reused for four times without loss in its activity.

Từ khóa


Tài liệu tham khảo

1993, Chem. Rev., 93, 267, 10.1021/cr00017a013

2003, Sol. Energy Mater. Sol. Cells, 77, 65, 10.1016/S0927-0248(02)00255-6

2012, Appl. Phys. Lett., 100, 181903, 10.1063/1.4709486

2003, Catal. Today, 84, 191, 10.1016/S0920-5861(03)00273-6

1995, Chem. Rev., 95, 735, 10.1021/cr00035a013

2001, Appl. Phys. Lett., 78, 3968, 10.1063/1.1380730

2001, Chem. Commun., 24, 2718, 10.1039/b107314a

2000, Chem. Lett., 29, 1354, 10.1246/cl.2000.1354

2003, Chem. Mater., 15, 2280, 10.1021/cm0340781

2001, J. Colloid Interface Sci., 244, 262, 10.1006/jcis.2001.7982

2001, Appl. Catal., B, 33, 119, 10.1016/S0926-3373(01)00170-9

2007, Catal. Commun., 8, 607, 10.1016/j.catcom.2006.08.022

2009, Nat. Mater., 8, 76, 10.1038/nmat2317

2012, Angew. Chem., Int. Ed., 51, 68, 10.1002/anie.201101182

2010, Dalton Trans., 39, 1488, 10.1039/B914110C

2010, Langmuir, 26, 3894, 10.1021/la904023j

2011, J. Am. Chem. Soc., 133, 8074, 10.1021/ja200997a

2003, Nano Lett., 3, 231, 10.1021/nl0258776

2014, J. Solid State Chem., 212, 1, 10.1016/j.jssc.2014.01.011

2012, Ultrason. Sonochem., 19, 9, 10.1016/j.ultsonch.2011.05.018

2015, Nanoscale, 7, 7849, 10.1039/C5NR00504C

2015, J. Hazard. Mater., 291, 83, 10.1016/j.jhazmat.2015.02.071

2011, Ind. Eng. Chem. Res., 50, 9594, 10.1021/ie200797e

2013, RSC Adv., 3, 7774, 10.1039/c3ra23246h

2010, Chem. Commun., 46, 6965, 10.1039/c0cc01432j

2012, Adv. Mater., 24, 1084, 10.1002/adma.201104110

2011, Energy Environ. Sci., 4, 4517, 10.1039/c1ee01400e

2012, Powder Technol., 227, 35, 10.1016/j.powtec.2012.02.008

2014, Appl. Catal., B, 152–153, 335, 10.1016/j.apcatb.2014.01.047

2011, Energy Environ. Sci., 4, 675, 10.1039/C0EE00418A

2011, Nat. Mater., 10, 456, 10.1038/nmat3017

2011, Appl. Catal., B, 108–109, 100, 10.1016/j.apcatb.2011.08.014

2013, Nanoscale, 5, 2952, 10.1039/c3nr34012k

2010, ACS Appl. Mater. Interfaces, 2, 2915, 10.1021/am100618h

2012, J. Hazard. Mater., 239–240, 316, 10.1016/j.jhazmat.2012.08.078

See supplementary material at http://dx.doi.org/10.1063/1.4928286 for detailed experimental procedures for the preparation of materials, instrumental parameters and some of the results.