Reduced Flavin: NMR investigation of N(5)-H exchange mechanism, estimation of ionisation constants and assessment of properties as biological catalyst

BMC Biochemistry - Tập 6 - Trang 1-11 - 2005
Peter Macheroux1, Sandro Ghisla2, Christoph Sanner3, Heinz Rüterjans3, Franz Müller4
1Graz University of Technology, Institute of Biochemistry, Graz, Austria
2Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
3Institut fur Biophysikalische Chemie, J.W. Goethe-Universität, Biozentrum N230, Frankfurt am Main, Germany
4Hergiswil, Switzerland

Tóm tắt

The flavin in its FMN and FAD forms is a versatile cofactor that is involved in catalysis of most disparate types of biological reactions. These include redox reactions such as dehydrogenations, activation of dioxygen, electron transfer, bioluminescence, blue light reception, photobiochemistry (as in photolyases), redox signaling etc. Recently, hitherto unrecognized types of biological reactions have been uncovered that do not involve redox shuffles, and might involve the reduced form of the flavin as a catalyst. The present work addresses properties of reduced flavin relevant in this context. N(5)-H exchange reactions of the flavin reduced form and its pH dependence were studied using the 15N-NMR-signals of 15N-enriched, reduced flavin in the pH range from 5 to 12. The chemical shifts of the N(3) and N(5) resonances are not affected to a relevant extent in this pH range. This contrasts with the multiplicity of the N(5)-resonance, which strongly depends on pH. It is a doublet between pH 8.45 and 10.25 that coalesces into a singlet at lower and higher pH values. From the line width of the 15N(5) signal the pH-dependent rate of hydrogen exchange was deduced. The multiplicity of the 15N(5) signal and the proton exchange rates are little dependent on the buffer system used. The exchange rates allow an estimation of the pKa value of N(5)-H deprotonation in reduced flavin to be ≥ 20. This value imposes specific constraints for mechanisms of flavoprotein catalysis based on this process. On the other hand the pK ≈ 4 for N(5)-H protonation (to form N(5)+-H2) would be consistent with a role of N(5)-H as a base.

Tài liệu tham khảo

Ghisla S, Massey V: Mechanisms of Flavoprotein-catalyzed Reactions. Eur J Biochem. 1989, 181: 1-17. 10.1111/j.1432-1033.1989.tb14688.x. Bornemann S: Flavoenzymes that catalyse reactions with no net redox change. Nat Prod Rep. 2002, 19 (6): 761-772. 10.1039/b108916c. Venkataram UV, Bruice TC: On the Mechanism of Flavin-Catalyzed Dehydrogenation a,β to an Acyl Function. The Mechanism of 1,5-Dihydroflavin Reduction of Maleimides. J Am Chem Soc. 1984, 106: 5703-5709. 10.1021/ja00331a047. Urban P, Lederer F: Intermolecular hydrogen transfer catalyzed by a flavodehydrogenase, bakers' yeast flavocytochrome b2. J Biol Chem. 1985, 260 (20): 11115-11122. Lederer F: Extreme pKa displacements at the active sites of FMN-dependent alpha-hydroxy acid-oxidizing enzymes. Protein Sci. 1992, 1 (4): 540-548. Müller F: Nuclear magnetic resonance studies on flavoproteins. Chemistry and Biochemistry of Flavoproteins. Edited by: Müller F. 1992, Boca Raton, Florida: CRC Press, III: 558-595. Umhau S, Pollegioni L, Molla G, Diederichs K, Welte W, Pilone MS, Ghisla S: The x-ray structure of D-amino acid oxidase at very high resolution identifies the chemical mechanism of flavin-dependent substrate dehydrogenation. Proc Natl Acad Sci USA. 2000, 97 (23): 12463-12468. 10.1073/pnas.97.23.12463. Mattevi A, Vanoni MA, Curti B: Structure of D-amino acid oxidase: new insights from an old enzyme. Current Opinion in Structural Biology. 1997, 7 (6): 804-810. 10.1016/S0959-440X(97)80150-9. Molla G, Pilone MS, Pollegioni L, Ghisla S: Studies on the elimination reaction of Rhodotorula gracilis D-amino acid oxidase with β-chloro-D-alanine. Flavins and Flavoproteins 2002: Proc 14th Int Symp, Cambridge, UK, 2002. Edited by: Chapman S, Perham R, Scrutton N. 2002, Agency for Scientific Publ., Berlin, 2002: 299-304. Ghisla S, Pollegioni L: D-Amino Acid Oxidase: Still New Lessons from a Seventy Year Old Enzyme. Flavins and Flavoproteins, Proc 15th Int Symp. 2005, Walsh CT, Krodel E, Massey V, Abeles RH: Studies on the elimination reaction of D-amino acid oxidase with α-amino-β-chlorobutyrate. Further evidence for abstraction of substrate α-hydrogen as a proton. J Biol Chem. 1973, 248 (6): 1946-1955. Maclean J, Ali S: The structure of chorismate synthase reveals a novel flavin binding site fundamental to a unique chemical reaction. Structure (Camb). 2003, 11 (12): 1499-1511. 10.1016/j.str.2003.11.005. Lauhon CT, Bartlett PA: Substrate analogs as mechanistic probes for the bifunctional chorismate synthase from Neurospora crassa. Biochemistry. 1994, 33 (47): 14100-14108. 10.1021/bi00251a019. Edmondson DE, Mattevi A, Binda C, Li M, Hubalek F: Structure and mechanism of monoamine oxidase. Curr Med Chem. 2004, 11 (15): 1983-1993. Franken HD, Rüterjans H, Müller F: Nuclear-magnetic-resonance investigation of 15N- labeled flavins, free and bound to Megasphaera elsdenii apoflavodoxin. Eur J Biochem. 1984, 138 (3): 481-489. 10.1111/j.1432-1033.1984.tb07942.x. Moonen CT, Vervoort J, Müller F: Reinvestigation of the structure of oxidized and reduced flavin: carbon-13 and nitrogen-15 nuclear magnetic resonance study. Biochemistry. 1984, 23 (21): 4859-4867. 10.1021/bi00316a007. Rüterjans H, Kaun E, Hull WE, Limbach HH: Evidence for tautomerism in nucleic acid base pairs. 1 H NMR study of 15N labeled tRNA. Nucleic Acids Res. 1982, 10 (21): 7027-7039. Kaplan JI, Fraenkel G: NMR of chemically exchanging systems. 1980, New York: Academic press Martin G, Martin ML, Gouesnard JP: 15N-NMR Spectroscopy. Edited by: Diel P, Fluck E, Korfeld R. 1981, Berlin: Springer Verlag, 18: 187-326. Binsch G, Lambert JB, Roberts BW, Roberts JD: Nitrogen-15 magnetic resonance spectroscopy II. Coupling constants. J Am Chem Soc. 1964, 86: 5564-5570. 10.1021/ja01078a033. Gunter H: NMR-Spectroscopy. 1983, Stuttgart: Thieme-Verlag Blomberg F, Maurer W, Rüterjans H: 15N nuclear magnetic resonance investigations on amino acids. Proc Natl Acad Sci USA. 1976, 73 (5): 1409-1413. Dixon M, Webb EC: Enzymes. 1979, New York: Longman/Academic Press Ghisla S, Macheroux P, Sanner C, Rüterjans H, Müller F: Ionization properties of reduced 1,5-dihydroflavin, rates of N(5)-H exchange with solvent. Flavins and Flavoproteins. Edited by: Curti B, Ronchi S, Zanetti G. 1991, Berlin, New York: Walter de Gruyter, 27-32. Adamson AW: A Textbook of Physical Chemistry. 1973, New York: Academic Press Ghisla S, Hartmann U, Hemmerich P, Müller F: Synthese, Struktur und Reaktivität von Dihydroflavinen. Liebig's Ann Chem. 1973, 1973: 1388-1415. Yalloway GN, Mayhew SG, Boren SJ, Vervoort J: Effects of pH on the 13C and 15N NMR spectra of the hydroquinone of Desulfovibrio vulgaris flavodoxin and its G61A mutant. Flavins and Flavoproteins. Edited by: Ghisla S, Macheroux P, Sund H. 1999, Berlin: Agency for Scientific Publications, 187-190. Vervoort J, Müller F, LeGall J, Bacher A, Sedlmaier H: Carbon-13 and nitrogen-15 nuclear-magnetic-resonance investigation on Desulfovibrio vulgaris flavodoxin. Eur J Biochem. 1985, 151 (1): 49-57. 10.1111/j.1432-1033.1985.tb09067.x. Eisenreich W, Kemter K, Bacher A, Mulrooney SB, Williams CH, Müller F: 13C-, 15N- and 31P-NMR studies of oxidized and reduced low molecular mass thioredoxin reductase and some mutant proteins. Eur J Biochem. 2004, 271 (8): 1437-1452. 10.1111/j.1432-1033.2004.04043.x. Ludwig ML, Schopfer LM, Metzger AL, Partridge KA, Massey V: Structure and oxidation-reduction behavior of 1-deaza-FMN flavodoxins: modulation of redox potentials in flavodoxins. Biochemistry. 1990, 29 (45): 10364-10375. 10.1021/bi00497a011. van Schagen CG, Müller F: A 13C nuclear-magnetic-resonance study on free flavins and Megasphaera elsdenii and Azotobacter vinelandii flavodoxin. 13C-enriched flavins as probes for the study of flavoprotein active sites. Eur J Biochem. 1981, 120 (1): 33-39. 10.1111/j.1432-1033.1981.tb05666.x. Müller F, Vervoort J, Lee J, Horowitz M, Carreira LA: Coherent anti-Stokes Raman spectra of isoalloxazines. J Ramn Spectrosc. 1983, 14: 106-117. 10.1002/jrs.1250140211. Witanowski M, Stefaniak L, Webb GA: Annu Rep NMR Spectros. 1981, 11B: 1-148. Gutowsky HS, McCall DW, Slichter CP: Nuclear magnetic resonance multiplets in liquids. J Chem Phys. 1953, 21 (2): 279-292. 10.1063/1.1698874. Grunwald E, Loewenstein A, Meiboom S: Rates and mechanisms of protolysis of methylammonium ion in aqueous solution studied by proton magnetic resonance. J Chem Phys. 1957, 27 (3): 630-640. 10.1063/1.1743802.