Redirection of cellular cytotoxicity

Cell Biochemistry and Biophysics - Tập 26 - Trang 153-165 - 1995
A. J. T. George1,2, J. A. Titus2, C. R. Jost2, I. Kurucz2, P. Perez2, S. M. Andrew2, P. J. Nicholis3, J. S. Huston4, D. M. Segal2
1Department of Immunology, Royal Postgraduate Medical School, Hammersmith Hospital, London, UK
2Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda
3Surgical Neurology Branch, National Institute of Neurological Diseases and Stroke, National Institutes of Health, Bethesda
4Creative BioMolecules Inc., Hopkinton

Tóm tắt

In this article the authors discuss an indirect system for redirecting cellular cytotoxicity, which utilizes a “universal” bispecific antibody to redirect T-cells to kill cells targeted with single-chain Fv (sFv) fusion proteins that carry a peptide tag recognized by the bispecific antibody. This approach has a number of theoretical advantages in the immunotherapy of cancer.

Tài liệu tham khảo

Segal, D. M., Urch, C. E., George, A. J. T., and Jost, C. R. (1992) Bispecific antibodies in cancer treatment, inBiologic Therapy of Cancer Updates (DeVita, V. T., Jr, Hellman, S., and Rosenberg, S. A., eds.), Lippincott, Philadelphia, pp. 1–12. Segal, D. M., Jost, C. R., and George, A. J. T. (1993) Targeted cellular cytotoxicity, inCytotoxic Cells: Generation, Recognition, Effector Functions, Methods (Sitkovsky, M. V., Henkart, P. A., eds.), Burkhauser, Boston, pp. 96–110. Perez, P., Hoffman, R. W., Titus, J. A., and Segal, D. M. (1986) Specific targeting of human peripheral blood T cells by heteroaggregates containing anti-T3 crosslinked to anti-target cell antibodies.J. Exp. Med. 163, 166–178. Qian, J. H., Titus, J. A., Andrew, S. M., Mezzanzanica, D., Garrido, M. A., Wunderlich, J. R., and Segal, D. M. (1991) Human peripheral blood lymphocytes targeted with bispecific antibodies release cytokines that are essential for inhibiting tumor growth.J. Immunol. 146, 3250–3256. Karpovsky, B., Titus, J. A., Stephany, D. A., and Segal, D. M. (1984) Production of target-specific effector cells using hetero-cross-linked aggregates containing anti-target cell and anti-Fcγ receptor anti-bodies.J. Exp. Med. 160, 1686–1701. Nitta, T., Sato, K., Yagita, H., Okumura, K., and Ishii, S. (1990) Preliminary trial of specific targeting therapy against malignant glioma.Lancet 335, 368–371. Bolhuis, R. L., Lamers, C. H., Goey, S. H., Eggermont, A. M., Trimbos, J. B., Stoter, G., et al. (1992) Adoptive immunotherapy of ovarian carcinoma with bs-MAb-targeted lymphocytes: a multicenter study.Int. J. Cancer Suppl. 7, 78–81. Bamias, A. and Epenetos, A. A. (1995) In vivo targeting of monoclonal antibodies for immunoscintigraphy and therapy of human malignancies, inMonoclonal Antibodies (Ritter, M. A. and Ladyman, H. M., eds.), Cambridge University Press, Cambridge, UK, pp. 222–246. Staerz, U. D., Kanagawa, O., and Bevan, M. J. (1985) Hybrid anti-bodies can target sites for attack by T cells,Nature 314, 628–631. Milstein, C. and Cuello, A. C. (1983) Hybrid hybridomas and their use in immunohistochemistry.Nature 305, 537–540. Glennie, M. J., McBride, H. M., Worth, A. T., and Stevenson, G. T. (1987) Preparation and performance of bispecific (Fab′γ)2 antibody containing thioether-linked Fab'γ fragments.J. Immunol. 139, 2367–2375. George, A. J. T. (1995) The production of antibodies using phage display libraries, inMonoclonal Attitudes (Ritter, M. A. and Ladyman, H. M., eds.), Cambridge University Press, Cambridge, UK, pp. 142–165. Kostelny, S. A., Cole, M. S., and Tso, J. Y. (1992) Formation of a bispecific antibody by the use of leucine zippers.J. Immunol. 148, 1547–1553. Esteban, J. M., Colcher, D., Sugarbaker, P., Carrasquillo, J. A., Bryant, G., Thor, A., et al. (1987) Quantitative and qualitative aspects of radiolocalization in colon cancer patients of intravenously administered MAb B72.3.Int. J. Cancer 39, 50–59. Tutt, A., Stevenson, G. T., and Glennie, M. J. (1991) Trispecific F(ab')3 derivatives that use cooperative signaling via the TCR/CD3 complex and CD2 to activate and redirect resting cytotoxic T cells.J. Immunol. 147, 60–69. Huston, J. S., Levinson, D., Mudgett-Hunter, M., Tai, M.-S., Novotny, J., Margolies, M. J., et al. (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced inEscherichia coli.Proc. Natl. Acad. Sci. USA 85, 5879–5883. Bird, R. E., Hardman, K. D., Jacobson, J. W., Johnson, S., Kaufman, B. M., Lee, S. M., et al. (1988) Single-chain antigen-binding proteins.Science 242, 423–426. Yokota, T., Milenic, D. E., Whitlow, M., and Schlom, J. (1992) Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms.Cancer Res. 52, 3402–3408. Yokota, T., Milenic, D. E., Whitlow, M., Wood, J. F., Hubert, S. L., and Schlom, J. (1993) Microautoradiographic analysis of the normal organ distribution of radioiodinated single-chain Fv and other immunoglobulin forms.Cancer Res. 53, 3776–3783. McCafferty, J., Griffiths, A. D., Winter, G., and Chiswell, D. J. (1990) Phage antibodies: filamentous phage displaying antibody variable domains.Nature 348, 552–554. Clackson, T., Hoogenboom, H. R., Griffiths, A. D., and Winter, G. (1991) Making antibody fragments using phage display libraries.Nature 352, 624–628. Chester, K. A., Begent, R. H. J., Robson, L., Keep, P., Pedley, R. B., Andrews, S. M., et al. (1994) Redirection of T cell-mediated cytotoxicity by a recombinant single-chain Fv molecule.J. Immunol. 152, 1802–1811. Nicholls, P. J., Johnson, V. G., Andrew, S. M., Hoogenboom, H. R., Raus, J. C., and Youle, R. J. (1993) Characterization of single-chain antibody (sFv)-toxin fusion proteins producedin vitro in rabbit reticulocyte lysate.J. Biol. Chem. 268, 5302–5308. Nicholls, P. J., Johnson, V. G., Blanford, M. D., and Andrew, S. M. (1993) An improved method for generating single-chain antibodies from hybridomas.J. Immunol. Methods 165, 81–91. Hoogenboom, H. R., Griffiths, A. D., Johnson, K. S., Chiswell, D. J., Hudson, P., and Winter, G. (1991) Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains.Nucleic Acids Res. 19, 4133–4137. Evans, G. I., Lewis, G. K., Ramsay, G., and Bishop, J. M. (1985) Isolation of monoclonal antibodies specific for human c-myc protooncogene product.Mol. Cell Biol. 5, 3610–3616. Huston, J. S., George, A. J. T., Tai, M.-S., McCartney, J. E., Jin, D., Segal, D. M., et al. (1995) Single-chain Fv design and production by preparative folding, inAntibody Engineering: A Practical Approach (Borrebaeck, C., ed.), Oxford University Press, Oxford, UK, pp. 185–225. Titus, J. A., Garrido, M. A., Hecht, T. T., Winkler, D. F., Wunderlich, J. R., and Segal, D. M. (1987) Human T cells targeted with anti-T3 cross-linked to antitumor antibody prevent tumor growth in nude mice.J. Immunol. 138, 4018–4022. Gilliand, L. K., Clark, M. R., and Waldmann, H. (1988) Universal bispecific antibody for targeting tumor cells for destruction by cytotoxic T cells.Prod. Natl. Acad. Sci. USA 85, 7719. Hayden, M. S., Linsley, P. S., Gayle, M. A., Bajorath, J., Brady, W. A., Norris, N. A., et al. (1994) Single-chain mono- and bispecific antibody derivatives with novel biological properties and antitumour activity from a COS cell transient expression system.Therapeutic Immunol. 1, 3–15. Pack, P. and Plückthun, A. (1992) Miniantibodies: use of amphiphatic helices to produce functional, flexibly linked dimeric Fv fragments with high avidity inEscherichia coli.Biochemistry 31, 1579–1584. Hollinger, P., Prospero, T., and Winter, G. (1993) “Diabodies”: small bivalent and bispecific antibody fragments.Proc. Natl. Acad. Sci. USA 90, 6444–6448. Gruber, M., Schodin, B. A., Wilson, E. R., and Kranz, D. M. (1994) Efficient tumor cell lysis mediated by a bispecific single chain antibody expressed inEscherichia coli.J. Immunol. 152, 5368–5374. Mallender, W. D. and Voss, Jr., E. W. (1994) Construction, expression, and activity of a bivalent bispecific single-chain antibody.J. Biol. Chem. 33, 10,100–10,108. Paganelli, G., Magnani, P., Zito, F., Villa, E., Sudati, F., Lopalco, L., et al. (1991) Three-step monoclonal antibody tumor targeting in carcinoembryonic antigen-positive patients.Cancer Res. 51, 5960–5966. Huston, J. S., Cohen, C., Maratea, D., Fields, F., Tai, M.-S., Cabral-Dension, N., et al. (1992) Multisite association by recombinant proteins can enhance binding selectivity. Preferential removal of immune complexes from serum by immobilized truncated FB analoges of the B domain from staphylococcal protein A.Biophys. J. 62, 87–91. George, A. J. T. and Stevenson, F. K. (1989) Prospects for the treatment of B cell tumors using idiotypic vaccination.Int. Rev. Immunol. 4, 271–310. Huston, J. S., McCartney, J., Tai, M.-S., Mottola-Hartshorn, C., Jin, D., Warren, F., et al. (1993) Medical applications of single-chain antibodies.Int. Rev. Immunol. 10, 195–217.